Teskari matritsani topishning Gauss-Jordan usuli
A
xosmas matritsaning
1
A
teskari matritsasini topishning qulay usullaridan
biri matritsa satrlari ustida elementar almashtirishlarga asoslangan
Gauss-Jordan
usuli
hisoblanadi.
1
A
matritsani topishning Gauss-Jordan usuli ushbu tartibda amalga oshiriladi
7
.
7
Kenneth L. Kuttler-Elementary Linear Algebra [Lecture notes] (2015). pp. 96-99
Gauss-Jordan usulining algoritmi
.
1
o
A
va
I
matritsalarni yonma-yon yozib,
)
|
(
I
A
kengaytirilgan
matritsa tuziladi;
.
2
o
Elementar almashtirishlar yordamida
)
|
(
I
A
matritsa
)
|
(
B
I
ko‘rinishga keltiriladi. Bunda
B
matritsa
A
matritsa uchun teskari
matritsa bo‘ladi.
3.3-misol.
3
1
1
2
A
matritsaga teskari marritsani Gauss-Jardon usuli bilan toping
va natijani tekshiring.
Yechish.
2
1
1
)
2
(
1
0
0
1
2
1
1
3
)
|
(
r
r
r
I
A
~
~
1
2
2
)
1
(
1
0
2
1
2
1
3
1
r
r
r
~
5
:
3
1
2
1
5
0
3
1
2
2
r
r
~
~
5
:
5
3
5
1
2
1
1
0
3
1
2
2
r
r
~
).
|
(
5
3
5
1
5
1
5
2
1
0
0
1
1
A
I
Yuqorida keltirilgan
k
i
i
r
r
r
belgilash
i
-satr bu satrga
songa
ko‘paytirilgan
k
- satrni qo‘shish natijasida hosil qilinganini,
:
i
i
r
r
belgi esa
i
- satr bu satrni
songa bo‘lish natijasida hosil qilinganini bildiradi.
Demak,
.
3
1
1
2
5
1
5
3
5
1
5
1
5
2
1
A
Tekshirish:
.
5
0
0
5
5
1
3
1
1
2
5
1
2
1
1
3
1
I
AA
3.4-misol.
4
1
2
0
3
1
2
1
1
A
matritsaga teskari marritsani Gauss-Jardon usuli
bilan toping.
Yechish.
1
3
3
1
2
2
)
2
(
1
0
0
0
1
0
0
0
1
4
1
2
0
3
1
2
1
1
)
|
(
r
r
r
r
r
r
I
A
~
~
2
:
1
0
2
0
1
1
0
0
1
0
3
0
2
2
0
2
1
1
2
2
r
r
~
2
3
3
2
1
1
)
3
(
1
0
2
0
2
1
2
1
0
0
1
0
3
0
1
1
0
2
1
1
r
r
r
r
r
r
~
~
)
3
(
:
1
2
3
2
7
0
2
1
2
1
0
2
1
2
3
3
0
0
1
1
0
3
0
1
3
3
r
r
~
3
2
2
3
1
1
)
1
(
)
3
(
3
1
2
1
6
7
0
2
1
2
1
0
2
1
2
3
1
0
0
1
1
0
3
0
1
r
r
r
r
r
r
~
~
).
|
(
3
1
2
1
6
7
3
1
0
3
2
1
1
2
1
0
0
0
1
0
0
0
1
1
A
I
Demak,
.
3
1
2
1
6
7
3
1
0
3
2
1
1
2
1
A
3.2. Matritsani LU yoyish
Chiziqli algebrada matritsalarning turli yoyilmalari keng qo‘llaniladi.
Matrisani yoyish
deb, uni biror xossaga (masalan, ortogonallik, simmetriklik,
diagonallik xossasiga) ega bo‘lgan ikki va ikkidan ortiq martitsalar ko‘paytmasi
shaklida ifodalashga aytiladi. Bunday yoyishlardan biri
matritsani LU yoyish
hisoblanadi.
Matritsani LU yoyishda
n
m
o‘lchamli
A
matritsa
LU
A
shaklda
ifodalanadi, bu yerda
L
diagonal elementlari birlardan iborat bo‘lgan
m
m
o‘lchamli quyi uchburchak (Lower-triangular) matritsa;
U
n
m
o‘lchamli
yuqori uchburchak (
n
m
da trapetsiya) (Upper-triangular) matritsa
8
.
Masalan,
.
0
0
0
0
0
*
0
0
0
*
*
*
0
*
*
*
*
1
*
*
*
0
1
*
*
0
0
1
*
0
0
0
1
A
Matritsaning LU yoyilmasi yana
matritsaning LU faktorizasiyasi
deb
ataladi. Matritsaning LU yoyilmasidan chiziqli algebraik tenglamalar sistemasini
yechishda va teskari matritsani topishda foydalaniladi.
n
m
o‘lchamli
A
matritsa
LU
A
shaklga keltirish (LU yoyish) umuman
olganda
A
matritsaning satrlariga noldan farqli songa ko‘paytirilgan boshqa
satrni qo‘shish orqali quyidagi tartibda amalga oshiriladi.
3.5-misol.
1
3
7
0
6
8
1
4
5
2
1
8
3
5
4
2
5
1
4
2
A
matritsani LU yoying.
Yechish.
Matritsa satrlarida ketma-ket elementar almashtirishlar bajaramiz:
8
Lay, David C. Linear algebra and is applications. Copyright. 2012, pp.162-169
A matritsani LU yoyish algoritmi
.
1
o
A
matritsa satrlarida ketma-ket elementar almashtirishlar bajariladi
va U shaklga keltiriladi;
.
2
o
Satrlarda bajarilgan elementar almashtirishlar ketma-ketligi asosida
L
yozuv hosil qilinadi va bu yozuvda barcha diagonal elementlar
ustunlarni bo‘lish orqali birlarga aylantiriladi.
~
~
~
~
5
12
4
12
0
10
4
3
9
0
3
2
1
3
0
2
5
1
4
2
1
3
7
0
6
8
1
4
5
2
1
8
3
5
4
2
5
1
4
2
A
.
5
0
0
0
0
1
2
0
0
0
3
2
1
3
0
2
5
1
4
2
U
5
4
0
0
0
10
2
0
0
0
3
2
1
3
0
2
5
1
4
2
A
matritsa 4 ta satrdan tashkil topgani sababli
L
matritsa
4
4
o‘lchamli
bo‘ladi. Birinchi qadamda belgilangan yozuvlar
L
matritsa yozuvining ustunlarini
tashkil qiladi. Bu yozuvda barcha diagonal elementlarni birlarga aylantiramiz:
Demak,
.
5
0
0
0
0
1
2
0
0
0
3
2
1
3
0
2
5
1
4
2
1
2
4
3
0
1
3
1
0
0
1
2
0
0
0
1
1
3
7
0
6
8
1
4
5
2
1
8
3
5
4
2
5
1
4
2
n
- tartibli kvadrat matritsa berilgan bo‘lsin. Bunda
A
matritsani
LU
yoyish
turli algoritmlar bilan amalga oshirilishi mumkin
9
. Shunday algoritmlardan biri
bilan tanishamiz.
A
matritsa xosmas bo‘lsin. U holda ta’rifga ko‘ra
L
n
n
n
l
l
l
l
l
l
1
...
...
...
...
...
...
0
...
1
0
...
0
1
0
...
0
0
1
3
2
1
32
31
21
A
nn
n
n
n
n
n
n
U
nn
n
n
n
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
u
u
u
u
u
u
u
u
u
u
...
...
...
...
...
...
...
...
...
...
0
0
0
...
...
...
...
...
...
0
0
...
0
...
3
2
1
3
33
32
31
2
23
22
21
1
13
12
11
3
33
2
23
22
1
13
12
11
.
Bundan
9
Kenneth L. Kuttler-Elementary Linear Algebra [Lecture notes] (2015). pp. 96-99
5
4
12
6
2
9
2
3
4
2
5
:
2
:
3
:
2
:
1
2
4
3
1
3
1
1
2
1
.
.
1
2
4
3
0
1
3
1
0
0
1
2
0
0
0
1
L
Bundan
n
k
j
i
k
kj
ik
kj
ik
ij
u
l
u
l
a
1
)
,
min(
1
/
.
Bu yig‘indidagi oxirgi qo‘shiluvchilarni ajratib, topamiz:
1
1
,
i
k
kj
ik
ij
ij
u
l
a
u
agar
j
i
bo‘lsa; (1.3.2)
1
1
1
j
k
kj
ik
ij
jj
ij
u
l
a
u
l
, agar
j
i
bo‘lsa. (1.3.3)
Shunday qilib,
L
va
U
matritsalarning noma’lum elementlari
ij
a
va topilgan
kj
ik
u
l
,
lar orqali ketma-ket ifodalanadi.
2-izoh.
(1.3.2) va (1.3.3) formulalar shunday tartiblanganki, bunda avval
barcha
ij
u
larni va keyin barcha
ij
l
larni hisoblab bo‘lmaydi, va aksincha. Bu
formulalar orqali hisoblashlar quyidagi tartibda bajariladi:
,
1
1
j
j
a
u
;
,...,
2
,
1
n
j
,
11
1
1
u
a
l
i
i
;
,...,
3
,
2
n
i
,
1
21
2
2
j
j
j
u
l
a
u
;
,...,
3
,
2
n
j
,
22
12
1
2
2
u
u
l
a
l
i
i
i
;
,...,
4
,
3
n
i
va hokazo, ya’ni
U
matritsaning satrlari va
L
matritsaning ustunlari almashlab
hisoblanadi.
3.5-misol.
9
7
6
4
9
4
9
2
8
A
matritsani LU yoying.
Yechish.
Berilgan matritsa xosmas, chunki
.
0
166
det
A
A
LU
yoyilmani tuzamiz:
9
7
6
4
9
4
9
2
8
0
0
0
1
0
1
0
0
1
33
23
22
13
12
11
32
31
21
u
u
u
u
u
u
l
l
l
.
L
va
U
matritsalarning noma’lum elementlarini (1.3.2) va (1.3.3) formulalar
bilan aniqlaymiz:
,
8
11
11
a
u
,
2
12
12
a
u
,
9
13
13
a
u
,
2
1
8
4
1
21
11
21
a
u
l
,
8
2
2
1
9
12
21
22
22
u
l
a
u
,
2
1
9
2
1
4
13
21
23
23
u
l
a
u
,
4
3
8
6
1
31
11
31
a
u
l
,
16
11
2
4
3
7
8
1
)
(
1
12
31
32
22
32
u
l
a
u
l
.
32
83
2
1
16
11
9
4
3
9
23
32
13
31
33
33
u
l
u
l
a
u
Demak,
9
7
6
4
9
4
9
2
8
.
32
83
0
0
2
1
8
0
9
2
8
1
16
11
4
3
0
1
2
1
0
0
1
Do'stlaringiz bilan baham: |