Mavzu: Mantiqiy funksiyalar va Bul algebrasini asoslari



Download 224,85 Kb.
bet1/4
Sana03.12.2022
Hajmi224,85 Kb.
#877821
  1   2   3   4
Bog'liq
2-mavzu

Mavzu: Mantiqiy funksiyalar va Bul algebrasini asoslari


Reja:

  1. Bul algebrasining asoslari

  2. Mantiqiy turdagi funktsional qurilmalar.

  3. Bul algebrasidan foydalanib Bul ifodalarini soddalashtirish

Tayanch so’z va iboralar: : Mantiqiy funksiyalar, Bul algebrasi, mantiqiy ifoda, haqiqiylik jadvali, mantiqiy elementlar, Elektronika, mikroelektronika, integral sxema, yarim o’tkazgich.
Qo‘llaniladigan ta’lim texnologiyalari: dialogik yondoshuv, muammoli ta ’lim. Blits-so ‘rov, munozara, o‘z-o ‘zini nazorat.
    1. Bul algebrasining asoslari


Klassik matematikada funksiya ikki usulda beriladi: analitik (formula yozuvi) va jadval (masalan, lug‘atlarda beriladigan funksiyalar qiymatining jadvali). Mantiqiy funksiyalar ham shunday usullarda berilishi mumkin.
Jadval usulida, argumentlar qiymatining mumkin bo‘lgan o‘rin almashtirishlari va ularga mos keluvchi mantiqiy funksiyalarning qiymatlari ifodalangan rostlik jadvali tuziladi. Bunday o‘rinalmashtirishlarning soni chekli bo‘lganligi uchun, rostlik jadvali funksiya qiymatini argumentning ixtiyoriy qiymati uchun aniqlashga imkon beradi (funksiyaning qiymatlarini argumentlarning barcha qiymatlari uchun emas, ba’zi bir qiymatlari uchun aniqlaydigan matematik funksiyalar jadvalidan farqli ravishda).
Bir argumentli mantiqiy funksiyalar uchun rostlik jadvali keltirilgan. Bir argumentning hammasi bo‘lib to‘rtta funksiyasi mavjud.
3-jadval



X argumenti

Funksiyalar

f0(x)

f1(x)

f2(x)

f3(x)

0

0

0

1

1

1

0

1

0

1

Agar funksiya argumentlarining soninga teng bo‘lsa, argument qiymatlarining turli o‘rin almashtirishlari soni 2n ni tashkil qiladi, n argumentning

turli funksiyalari soni 2n . Masalan, n=2 da argumentlar qiymatining o‘rin almashtirishlari soni 22=4 ga, funksiyalar soni esa 24=16 ga teng. Ikki argumentli funksiya uchun rostlik jadvali 3-jadvalda keltirilgan.
Mantiqiy funksiya analitik usulda ham berilishi mumkin. Odatdagi matematikada funksiyani analitik usulda berilishi deganda, funksiyaning argumentlari biror matematik amal orqali bog‘langan matematik ifodalar ko‘rinishida berilishini tushunamiz.
Raqamli texnikada ikkita holatga ega bo‘lgan, nol va bir yoki «rost» va
«yolg‘on» so‘zlari bilan ifodalanadigan sxemalar qo‘llaniladi. Biror sonlarni qayta ishlash yoki eslab qolish talab qilinsa, ular bir va nollarning ma’lum kombinatsiyasi ko‘rinishida ifodalanadi. U holda, raqamli qurilmalar ishini ta’riflash uchun maxsus matematik apparat lozim bo‘ladi. Bunday matematik apparat Bul algebrasi yoki Bul mantiqi deb ataladi. Uni irland olimi D. Bul ishlab chiqqan.
Mantiq algebrasi «rost» va «yolg‘on» ko‘rinishdagi ikkita mantiq bilan ishlaydi. Bu shart «uchinchisi bo‘lishi mumkin emas» qonuni deb ataladi. Bu tushunchalarni ikkilik sanoq tizimidagi raqamlar bilan bog‘lash uchun «rost» ifodani 1 (mantiqiy bir) belgisi bilan, «yolg‘on» ifodani 0 (mantiqiy nol) belgisi bilan belgilab olamiz. Ular Bul algebrasi konstantalari deb ataladi.
Umumiy holda, mantiqiy ifodalar har biri 0 yoki 1 qiymat oluvchi x1, x2, x3,
...xn mantiqiy o‘zgaruvchilar (argumentlar)ning funksiyasi hisoblanadi. Agar mantiqiy o‘zgaruvchilar soni n bo‘lsa, u holda, 0 va 1 lar yordamida 2n ta kombinatsiya hosil qilish mumkin. Masalan, n=1 bo‘lsa: x=0 va x=1; n=2 bo‘lsa: x1x2=00,01,10,11 bo‘ladi. Har bir o‘zgaruvchilar majmui uchun y 0 yoki 1 qiymat olishi mumkin. Shuning chun n ta o‘zgaruvchini 2 ta turli mantiqiy funksiyalarga o‘zgartirish mumkin, masalan, n=2 bo‘lsa 16, n=3 bo‘lsa 256, n=4 bo‘lsa 65536 funksiya.
n o‘zgaruvchining ruxsat etilgan barcha mantiqiy funksiyalarini uchta asosiy amal yordamida hosil qilish mumkin:

  • mantiqiy inkor (inversiya, EMAS amali), mos o‘zgaruvchi ustiga «-» belgi qo‘yish bilan amalga oshiriladi;

  • mantiqiy qo‘shish (dizyunksiya, YOKI amali), «+» belgi qo‘yish bilan amalga oshiriladi;

  • mantiqiy ko’paytirish (konyunksiya, HAM amali), «•» belgi qo‘yish bilan amalga oshiriladi.

Ifodalar ekvivalentligini ifodalash uchun «=» belgisi qo‘yiladi.
Mantiqiy funksiyalar va amallar turli ifodalanish shakllariga ega bo‘lishlari mumkin: algebraik, jadval, so‘z bilan va shartli grafik (sxemalarda). Mantiqiy funksiyalarni berish uchun mumkin bo‘lgan argumentlar majmuidan talab qilinayotgan mantiqiy funksiya qiymatini berish yetarli. Funksiya qiymatlarini ifodalovchi jadval haqiqiylik jadvali deb ataladi.
2.1, 2.2 va 2.3-jadvallarda ikkita o‘zgaruvchi x1,x2 uchun mantiqiy amallarning algebraik va jadval ifodasi keltirilgan.
2.4-jadval

Assotsiativlik qonunlaridan foydalanib, ko‘p o‘zgaruvchi (n>2) ixtiyoriy mantiqiy funksiyasini ikkita o‘zgaruvchi funksiyalar kombinatsiyasi ko‘rinishida


2
ifodalash mumkin. 22 =16 ikkita o‘zgaruvchi funksiyalarining to‘liq majmui 2.5-

jadvalda k eltirilgan. Funksiyalarning har biri x1 x2 o‘zgaruvchilar ustidan amalga oshirish mumkin bo‘lgan 16 ta mantiqiy amal kombinatsiyadan birini bildiradi va ular o‘z nomi va shartli belgisiga ega.


Masalan, «Istisnoli YOKI» amalini bajarishda x1 x2 bo‘lgandagi y6 =1; x1=

Download 224,85 Kb.

Do'stlaringiz bilan baham:
  1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish