Mavzu: chiziqsiz programmalashtirish masalasi va uning geometrik talqini


Misol. cheklanishlarni hisobga olgan holda



Download 423 Kb.
bet3/5
Sana12.04.2022
Hajmi423 Kb.
#545581
1   2   3   4   5
Bog'liq
CHIZIQSIZ PROGRAMMALASHTIRISH MASALASI VA UNING GEOMETRIK TALQINI

Misol. cheklanishlarni hisobga olgan holda ni maksimalllashtiring. Optimal qidiruv (1;0.5) nuqtadan boshlanada.

Ye ch i sh. =(1; 0.5) nuqta mavjud sohaning ichida yotadi va f( )=1.75. Keyingi х nuqtaga ko‘chish yo‘nalishi sifatida gradientning yo‘nalishini olamiz. nuqtadagi gradient ga teng. Bundan kelib chiqqan holda, navbatdagi nuqtaning koordinatalarini quyidagicha yozib olish mumkin:



х nuqta mavjud sohaga tegishli bo‘ladigan o‘zgaruvchining barcha qiymatlar oralig‘ini topamiz. Bu holda (5.4) tengsizliklar tizimining ko‘rinishi quyidagicha:

Bu tizimni yechish natijasida oraliq topiladi. ni yechib, ekanligini aniqlaymiz, ushbu qiymatda funksiya eng katta qiymatga erishadi. Lekin, qiymat oraliqqa tegishli emas. Shuning uchun deb olamiz.


Yangi х =(1,36; 0,95) nuqta ikkinchi cheklanish tengsizligi ( qiymat to‘g‘ri keluvchi tengsizlik) bilan aniqlanuvchi chegaraviy to‘gri chiziqda yotadi. х nuqtada funksiyaning qiymati f(х )=11,98>f(x )=8.75. х nuqta chegaraviy to‘g‘ri chiziqda yotgani uchun, keyingi nuqtaga o‘tish yo‘nalishini vektor bo‘yicha aniqlaymiz (gradient bo‘yicha harakat mavjud sohadan chiqib ketishga olib keladi). vektorni aniqlash uchun yordamchi (5.5)-(5.6) masalasini yozib olamiz: cheklanishlarni va ni hisobga olib ni maksimallashtiring.
Berilgan masalaning tenglamalar tizimi ikkita yechimga ega: (0.5568; -0,8352) va (-0,5568; 0,8352). Bu yechimlarni funksiyaga qo‘yib, funksiyaning maksimal qiymatiga (-0,5568; 0,8352) da erishilishining guvohi bo‘lamiz, ya'ni x1 nuqtadan =(-0,5568; 0,8352) bo‘ylab, ikkinchi chegaraviy to‘g‘ri chiziq orqali ko‘chish kerak. Keyingi nuqtaning koordinatalari . o‘zgaruvchining mavjud qiymatlar oralig‘ini yana aniqlaymiz, unda qiymat mavjud sohaga tegishli bo‘ladi. qanaotlantirishi kerak bo‘lgan cheklanishlar tizimiga ikkinchi cheklanish kirmaydi, chunki bu nuqta ushbu cheklanish bilan aniqlangan chegaraviy to‘g‘ri chiziqda yotadi. Berilgan tizimni yechib oralig‘ni topamiz:
.


5.4 rasm
Ekstremumning zaruriy sharti



dan foydalanib, =2,2 ekanligini aniqlaymiz. Lekin =2.2 oraliqqa tegishli emas, shuning uchun deb olamiz. Yangi nuqta cheklanishlar tizimining birinchi va ikkinchi tengsizligiga mos keluvchi ikkita chegaraviy to‘g‘ri chiziqlarning kesishmasida yotadi. Bu nuqtada funksiya f(х )=12,68>f(x )=11,98>f(x )=8.75 х nuqtadan ko‘chish yo‘nalishi vektorni topamiz; cheklanishlarni hisobga olib =0 ni maksimallashtiring .
Masalaning tenglamalar tizimi r =(0;0) yechimga ega. Olingan natijani T funksiyaga qo‘yib, maksimum T=0 ni hosil qilamiz, bu degani х maqsad funksiyasining mavjud sohadagi maksimum nuqtasidir, ya'ni max f(x )=12.68. 5.4 rasmdan ko‘rinib turganidek f(x) ning chizig‘i mavjud sohaning chegaralariga х nuqtada urinadi.



Download 423 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish