Mavzu: Bog`lanmagan tajribalar. Bernulli formulasi



Download 380 Kb.
bet3/4
Sana11.01.2022
Hajmi380 Kb.
#341677
1   2   3   4
Bog'liq
Bernulli formulasi

1-misol. Tanga tashlanganda gerb tomonini yuqoriga qarab tushish hodisasini, gerb tomonini yuqoriga qarab tushmaslik hodisasini desak, tangani tashlash tajribalari o`zaro bog`liq bo`lmaydi;

2-misol. Yashikda ta oq va ta qora shar bor. Yashikdan olingan shar yana qaytarib solinsa, bu holda yashikdan olingan har bir sharning oq chiqish ehtimoli ga va qora chiqish ehtimoli gat eng. Har bir tajribadan so`ng olingan shar yashikka qytarib solinsa, tajriblar ketma-ketligi bir-biriga bog`liq bo`lmaydi. Agar yashikdan olingan shar yashikka qaytarib tashlansa, bu holda o`tkazilgan tjribalar o`zaro bog`liq bo`ladi. Haqiqatan ham, agar yashikdan olingn shar oq bo`lsa, yashikdan olingan ikkinchi sharning oq chiqish ehtimoli gat eng bo`ladi.

Faraz qilaylik ta bog`lanmagan tajribalar o`tkazilayotgan bo`lsin, har bir tajribada hodisaning ro`y berish ehtimolligi o`zgarmas va ga teng, ro`y bermaslik ehtimolligi ham o`zgarmas bo`lib ga teng .

Bu bog`lanmagan ta tajribalarda hodisasining rosa m marta, qolgan n-m ta tajribalarda hodisaning ro`y berish ehtimolligini bilan belgilaymiz.

ehtimollik uchun formula keltirib chiharamiz.

Faraz qilaylik A hodisasi burinchi ta tajribada ro`y bersin, qolgan ta tajribada hodisasi ro`y bersin, ya`ni

Ko`paytirish teoremasiga asosan, bu holning ehtimolligi ga teng bo`ladi.

ta tajribalarda hodisaning rosa marta ro`y berishiga imkon tug`diruvchi hollar soni

ga teng.


Qo`shish teoremasiga asosan

(1)

Bu formulaga Bernulli formulasi deyiladi.





ehtimollar ning binom yoyilmasidagi lar oldidagi koeffitsentlarga teng bo`lganligi uchun ehtimollarga ehtimollikning binomial taqsimot qonuni deyiladi.

Faraz qilaylik, har bir tajribada ta birgalikda bo`lmagan hodisalarning bittasi ro`y berishi mumkin, har bir tajribada hodisasining ro`y berish ehtimolligi ga teng bo`lsin.



ta tajribalarda hodisaning , hodisaning ,…, hodisaning marta ro`y berish ehtimolligini bilan belgilaymiz .

Bu ehtimollik quyidagiga teng bo`ladi.



(2)

Bu ehtimollik polinomial yoyilmada oldidagi koeffitsentga teng bo`ladi.

Endi ehtimollikni o`zgarmas da, m ning funksiyasi sifatida o`rganamiz. uchun Bernulli formulasiga asosan

Oxiri tenglikdan ko`rinadiki,



ya`ni


bo`lsa bo`ladi .



bo`lsa , agar bo`lsa bo`ladi. Bulardan ko`rinadiki ehtimollik o`sishi bilan oldin o`sadi, maksimumga erishadi, ning keyingi o`sishida kamayib boradi .

Agar butun son bo`lsa, ning maksimal qiymati ikkita bo`ladi, va .

Agar butun son bo`lmasa, dan katta eng kichik butun sonda maksimumga erishadi. Agar qaralayotgan hodisaning eng katta ehtimoli yuz berishlari sonini bilan belgilasak, umumiy holda quyidagi formula o`rinli bo`ladi




Download 380 Kb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish