Matematika va infarmatika


Binar munosabatlar va ularning xossalari



Download 0,86 Mb.
bet5/5
Sana20.02.2022
Hajmi0,86 Mb.
#460478
1   2   3   4   5
Bog'liq
g

Binar munosabatlar va ularning xossalari.
Ta’rif. X*X ning istalgan G qism to’plami binar munosabat deyiladi. Binar munosabatlar P, Q, R va boshka lotin harflari bilan belgilanadi.
Matematikada binar munosabatlar «=», «<», «>», «¹», «ôú», «^» kabi belgilar orqali beriladi.
Masalan: C={3, 4, 5, 6, 7, 8, 9} to’plam elementlari orasidagi munosabat R: «x>y» berilgan. U quyidagi juftliklar to’plami orqali ifoda qilinadi.
G={(4;3), (5;3), (5;4), (6;3), (6;4), (6;5), (7;3), (7;4), (7;5), (7;6), (9;3), (9;4), (9;5), (9;6), (9;7)}.
Ta’rif: Agar X to’plamning har bir elementii o’z-o’zi bilan R munosabatda bo’lsa (ya’ni, xRx bajarilsa), u holda R munosabat X to’plamda refleksiv deyiladi.
Masalan, «=», «½ê», « » munosabatlar refleksivdir.
Ta’rif: Agar X to’plamning birorta ham elementi uchun xRx bajarilmasa, u holda R munosabat X to’plamda antirefleksiv deyiladi.
Masalan, «<», «>», «^» munosabatlar antirefleksivdir.
Ta’rif: Agar X to’plamda R munosabat berilgan bo’lib, xRy va yRx shartlar bir vaqtda bajarilsa, R-simmetrik munosabat deyiladi.
Masalan, «||», «^», «=» munosabatlar simmetrik munosabatlardir.
Ta’rif: Agar X to’plamda R munosabat uchun xRy va yRx ekanligidan x=y ekanligi kelib chiqsa, R antisimmetrik munosabat deyiladi.
Masalan, «x soni u soniga karrali» munosabati antisimmetrikdir.
Ta’rif: Agar X to’plamda berilgan R munosabat uchun xRy va uRz ekanligidan xRz bajarilishi kelib chiqsa, u holda R munosabat tranzitiv deyiladi.
Masalan, «=», « », «<» kabi munosabatlar tranzitivdir.
Ta’rif: Har qanday R munosabat refleksiv, simmetrik va tranzitiv bo’lsa, u holda R ekvivalentlik munosabati deyiladi.
Masalan, «||», «=», «@» kabi munosabatlar ekvivalentlik munosabati bo’ladi. Ekvivalentlik munosabati to’plamni sinflarga ajratadi.
Ta’rif: Agar R munosabat antisimmetrik va tranzitiv bo’lsa, u holda R tartib munosabati deyiladi.
Masalan, «<», «>», «£», «³» lar tartib munosabati bo’ladi.
Ta’rif: Agar X va Y to’plam elementlari orasidagi R munosabatda X to’plamning har bir elementiga Y to’plamning bittadan ortiq bo’lmagan elementi mos kelsa, u holda R funkts*ional munosabat yoki funkts*iya deyiladi. (Misollar maktabdan olinadi).
Ta’rif: Agar R munosabat funkts*ional bo’lsa, u holda uning aniqlanish sohasi funkts*iyaning aniqlanish sohasi deyiladi. qiymatlar sohasi esa, funkts*iyaning qiymatlar sohasi deyiladi.
Ta’rif: Agar X va Y to’plamlar elementlari orasidagi R munosabatda Xning har bir elementiga Yning faqat bitta elementi mos kelsa, u holda R munosabat Xni Yga syur’ektiv akslantirish deyiladi.
Ta’rif: Agar akslantirishning qiymatlar sohasi Y to’plam bilan teng bo’lsa, akslantirish in’ektiv deyiladi.
To‘plamlarni juft-jufti bilan kesishmaydigan qism to‘plamlarga ajratish.
Ta’rif. Agar bir vaqtning o‘zida quyidagi shartlar bajarilsa, X to‘plam juft-jufti bilan kesishmaydigan qism to‘plamlarga ajratiladi deyiladi:
1. Bo‘linish hosil qilgan qism to‘plamlar bo‘sh emas.
2. Bunday qism to‘plamlarning hech biri o‘zaro kesishmaydi.
3. Barcha qism to‘plamlarning birlashmasi berilgan to‘plam bilan ustma-ust tushadi. Masalan, N natural sonlar to‘plamini uchta o‘zaro kesishmaydigan qism to‘plamlarga ajratish mumkin: 1) tub sonlar to‘plami; 2) murakkab sonlar to‘plami; 3) 1 dan tashkil topgan to‘plam. N to‘plamni ikkita sinfga ham ajratish mumkin – juft sonlar to‘plami va toq sonlar to‘plami.
To‘plamni sinflarga ajratish, mumkin bo‘lgan barcha klassifikatsiyalashlarning asosida yotadi. Masalan, biologiyada barcha tirik organizmlarni tiplarga ajratish, qishloq xo‘jaligida mevalarni o‘lchamlarga yoki og‘irliklariga qarab navlarga ajratish, lug‘atlarda so‘zlarni alifbo bo‘yicha joylashtirish va h.k.
To‘plamni juft-jufti bilan kesishmaydigan qism to‘plamlarga ajratish har xil qiymatlar qabul qilishi mumkin bo‘lgan biror xossa yordamida amalga oshirilishi mumkin. Masalan, ranglarga ko‘ra sinflashda har bir sinfga bir xil rangli predmetlarni joylashtirish mumkin. Buni “x bilan y bir xil rangli” munosabat orqali hosil qilish mumkin.
Xuddi shunga o‘xshash “x talaba y talaba bilan bir kursda o‘qiydi” degan munosabat bilan universitet talabalari to‘rtta kursga ajratiladi. Lekin har qanday R munosabat to‘plamni sinflarga ajratish imkonini bermaydi. Qanday xususiyatga ega bo‘lgan munosabat to‘plamni juft-jufti bilan o‘zaro kesishmaydigan qism to‘plamlarga ajratishi quyidagi teorema yordamida aniqlanadi.
Teorema. R munosabat X to‘plamni sinflarga ajratishi uchun uning ekvivalentlik munosabati bo‘lishi zarur va yetarli.
Agar ekvivalentlik munosabati nomga ega bo‘lsa, u holda sinflarga ham unga mos nom beriladi. Masalan, agar kesmalar to‘plamida tenglik munosabati berilsa (bu ekvivalentlik munosabati bo‘ladi), u holda kesmalar to‘plami teng kesmalar sinfiga ajraladi. Uchburchaklar to‘plami o‘xshashlik munosabati bilan o‘xshash uchburchaklar sinfiga ajraladi va h.k.
Ekvivalentlik sinfini uning bitta vakili bilan aniqlash mumkin. Masalan, teng kasrlarning ixtiyoriy sinfini shu sinfga tegishli ixtiyoriy kasrni ko‘rsatish bilan berish mumkin. Bu vaziyat ekvivalentlik sinfining alohida vakillari to‘plamini o‘rganishga imkon beradi.

Foydalanilgan adabiyotlar.


· Bikbayeva N.U va boshqalar Matematika 2 - Toshkent.: O’qituvchi, 2005, 208 bet.
·
Bikbayeva N.U va boshqalar Matematika 3 - Toshkent.: O’qituvchi, 2005, 206 bet.
· Axmedov M va boshqalar Matematika 1, Toshkent.: O’zinkomsentr, 2003, 160-bet.
·
Axmedov M va boshqalar 1-sinfda matematika darslari - Toshkent.: O’zinkomsentr, 2003, 96-bet.
·
Ahmedov M., Ibragimov P., Abdurahmonova N., Jumayev M. E. “Birinchi sinf matematika darsligi.” - T.: ”Sharq”, 160-bet.
·
A’zamov A. ”Yosh matematika qomusiy lug’at”- Toshkent.: Qomuslar bosh tahririyati, 1991, 478 bet.
·
Bikbayeva N.U va boshqalar ’’Boshlang’ich sinflarda matematika o’qitish metodikasi ”- Toshkent.: O’qituvchi, 2007, 208 bet.

Jumayev M.E. va boshqalar. Matematika o’qitish metodikasi - T.: ”Ilm-Ziyo”, 2003, 240- bet




·


Download 0,86 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish