1.1 Matematik ta'lim jarayonida masalaning roli va o'rni. Matematik ta'lim jarayonida masalalardan foydalanish qadim zamonlardan beri qo'llanib kelinayotir. Shuning uchun ham matematika darslarida matematik masalaning roli va uning o'rni haqida gap borganda quyidagi uch bosqichni ko'zda tutish maqsadga muvofiqdir.
Matematika fanining nazariy qismlarini o'rganish matematik masalalarni yechish maqsadida amalga oshiriladi.
Matematika fanini o'rgatish matematik masalalarni yechish bilan birgalikda olib boriladi.
Matematikani o'rganish masala yoki misollar yechish orqali amalga oshiriladi.
Aytilganlardan ko'rinadiki, jamiyat rivojlanishining har bir bosqichida masalaning roli va uning o'rniga har xil baho berib kelingan.
1966 yili Xalqaro matematiklar simpoziumida matematik masala va misollarni yechish o'quvchilarning faqatgina matematik faoliyatlarini shakllantiribgina qolmay, balki ana shu fanga doir bilimlami o'zlashtirish va uni amaliyotga tadbiq qilishga ham xizmat qiladi, deyiladi.
Aytilgan har bir bosqichni aniq mavzu materiallari asosida ko'rib chikamiz.
1. Darsda "Ikki burchak yig’indisining sinfi" nomli mavzuni o'quvchilarga tushuntirsak, ular chiqarilgan natijaviy formuladan foydalanib mavzu materialiga doir misollarni yecha oladilar.
Berilgan: С – aylana
Isbot qilish kerak: ?
Isboti:
OA=1 bo’lgani uchun =AD=CD+CA (1)
Chizmadan: CD=EB, chunki bular o’zaro parallel to’g’ri chiziqlar otasidagi kesmalar (2)
(3)
(3) ni (2) ga qo’ysak . (4)
. (5)
(6)
(6) ni (5) ga qo’ysak,
(7)
(4) va (7) larni (1) ga qo’ysak,
bo’ladi.
Misol. Demak, Hisoblang:
2. Matematik tushunchalarni o'rganish matematik misol va masalalarni yechish bilan birgalikda olib boriladi, chunki o'qituvchi yangi o'rganiladigan matematik tushunchaning ta'rifini bergandan keyin uning analitik ifodasini yozadi. Masalan ko'rinishdagi tenglamaga ko'rsatkichli tenglama deyiladi deb ta'riflangandan so'ng, quyidagi ko'rinishdagi ko'rsatkichli tenglamani ifodalovchi misollarni ko'rsatish mumkin:
O'qituvchi ko'rinishdagi tenglamaning yechimini geometrik nuqtai-nazardan ko'rsatib berishi maqsadga muvofiqdir. O'qituvchi o'quvchilarga, agar koordinatalar tekisligida ikki funksiya grafigi o'zaro kesishsa, ular kesishish nuqtasining absissasi ana shu funksiyalarni tenglash natijasida hosil qilingan tenglamaning yechimi bo'lishini takrorlagandan so'ng tenglamani ham vca y=b ko'rinishlarda yozib, ularning har birining grafigini chizib, bu grafiklaming kesishish nuqtasining absissasini deb belgilash qabul qilinganligini tushuntirishi lozim. Bundan ko'rinadiki, tenglamaning yechimi bo'lar ekan. .
Ko'rsatkichli tenglamalaming barchasi ayniy algebraik almashtirishlar yordamida soddalashtirilib, ko'rinishga keltiriladi, so'ngra bundan, x noma'lum ko'rinishda topiladi.
3. Hozirgi davrda masala yoki misollar yechish orqali matematik ta'lim jarayonini olib borishning metodik usul va vositalari ishlab chiqilgan va bu usullar haqida ko'pgina ilmiy metodik va didaktik adabiyotlarda bayon qilingan. Matematik tushunchani masala yoki misollar yordamida kiritish va uning tub mohiyatini o'quvchilarga tushuntirish murakkab bo'lgan pedagogik jarayondir. Shuning uchun ham bir maktab o'qituvchisi dars jarayonida ishlatiladigan masalani tanlash yoki uni tuzishda juda ham ehtiyot bo'lmog'i lozimdir. Tuzilgan masalalarni dars jarayonida qo'llanish ana shu o'quvchilarning o'zlashtirish qobiliyatlarini hisobga olgan holda bo'lishi kerak. Har bir dars jarayonida ishlatiladigan masala yoki misol darsning maqsadiga mos kelishi kerak.
Agar darsda o'qituvchi o'quvchilarga biror yangi matematik tushunchani o'rgatmoqchi bo'lsa, tuziladigan masala yoki misol ana shu tushuncha mohiyatini ochib beruvchi xarakterda bo'lishi kerak.
a ning xususiy qiymatiga nisbatan chizilgan grafiklardan o'quvchilar o'qituvchi bilan birgalikda ko'rinishdagi funksiyaning grafigi va uning xossalari haqida umumiy xulosalarni keltirib chiqara oladilar. Bu yerda darsni tushuntirish metodikasi xususiylikdan umumiylikka tomon bo'lib, bunda o'quvchilar har bir tushunchani mohiyatini anglab etadilar.
Hozirgi zamon didaktikasida A.D.Semushin, K.I.Neshkov va Yu.M.Kolyagin, J.Ikromov, T.To'laganov va N.G'aybullaev kabi metodist matematiklar matematika kursidagi masala va misollarning bajaradigan funksiyasini quyidagicha turlarga ajratishadi:
-Masalaning ta'limiy funksiyasi.
-Masalaning tarbiyaviy funksiyasi.
-Masalaning rivojlantiruvchi xarakterdagi funksiyasi.
-Masalaning tekshiruv xarakterdagi funksiyasi.
Masalaning matematika darsi jarayonida bajaradigan funksiyalarini alohida-alohida ko'rib chiqamiz.
1. Masalaning ta'limiy funksiyasi asosan maktab matematika kursida o'rganilgan nazariy ma'lumot, matematik tushuncha, aksioma, teorema va matematik xulosalar, qonun-qoidalarning aniq masala yoki misollarga tadbiqi natijasida o'quvchilarda mustahkam matematik bilim va malakalar hosil qilish orqali amalga oshiriladi.
O'qituvchi ikki burchak yig'indisi va ayirmasining sinusi teoremasini o'tib bo'lganidan keyin, ana shu mavzu materialini o'quvchilar ongida mustahkamlash uchun quyidagicha misollarni yechish mumkin.
Maktab matematika kursidagi masala yoki misollarni yechish o'quvchilarda matematik malaka va ko'nikmalarni shakllantiribgina qolmay, balki olingan nazariy bilimlami amaliyotga tadbiq qila olishini ham ko'rsatadi. Agar o'qituvchi kvadrat tenglama mavzusini o'tib uni, mustahkamlash jarayonida kvadrat tenglamaga keltiriladigan masalalami yechib ko'rsatsa, o'quvchilarni ana shu mavzu materiali yuzasidan bilimlari mustahkamlanadi hamda kvadrat tenglama tushunchasining tadbiqi haqidagi fikr o'quvchilar ongida shakllanadi.