Вычислительный эксперимент в науке и технологии
Остановимся теперь на краткой характеристике основных областей применения математического моделирования. Основное внимание уделим классификации видов вычислительного эксперимента по применениям и по типам используемых математических моделей. Отмеченная взаимоувязанная классификация позволяет ориентировать исследователя на использование адекватного математического аппарата исследования математических моделей. Такая методологическая проблема зачастую затушевывается и сдерживает интеграционные процессы в самой прикладной математики, не говоря уже о трудностях математического моделирования.
Математическое моделирование традиционно развивается в недрах фундаментальных наук: механике и физике, для которых отмечается наивысший уровень теоретических исследований (другими словами, уровень математизации). В этих науках с внедрением современных математических методов, в том числе и численных, относительно благополучно. Для механики, например, характерно наличие устоявшихся математических моделей, существует банк основных задач. Поэтому здесь основное внимание уделяется построению вычислительных алгоритмов и созданию достаточно гибкого программного обеспечения. В биологии и химии фронт работ по математическому моделированию проходит на первой части триады вычислительного эксперимента модель - алгоритм - программа. Хотя и в разной степени, на разном уровне, но вопросы применения математических методов в фундаментальных науках решаются.
Значительно менее совершенен математический арсенал инженера и технолога. В технике до настоящего времени традиционным является путь опосредованного внедрения научного знания. Прежде всего новые идеи становятся достоянием фундаментальных наук, затем трансформируются в той или иной прикладной области и лишь затем - в конкретных технических проектах и разработках. Это относится прежде всего к применению современных математически методов теоретического исследования, математическому моделированию и вычислительному эксперименту. Такой путь превращения идеи в конкретное научно-техническое решение, новую технологию неоправданно долог и расточителен.
В современных условиях необходимо обеспечить повсеместное непосредственное внедрение математических методов в науку и технологию. Математическое моделирование технологических процессов сулит огромную выгоду, переход на новый качественный уровень самой технологии. Наиболее благодатное поле для приложения методов математического моделирования и вычислительного эксперимента - техника и промышленность, технология. Особое внимание заслуживают отрасли определяющие научно-технический прогресс сегодня, и прежде всего микроэлектроника. Численное моделирование в этом случае обеспечивает подъем своей технической базы - компьютеров.
Отметим еще один аспект в применении вычислительного эксперимента. В настоящее время мировая общественность совершенно справедливо обеспокоена экологическими последствиями крупномасштабных проектов, обеспечением безопасности функционирования работающих установок и проектируемых объектов. Вычислительный эксперимент на базе адекватных моделей позволяет испытать модель экологически опасного объекта в мыслимых и немыслимых условиях, дать практические рекомендации обеспечения условий безопасной работы, дать, если хотите, гарантии такой работы.
При исследовании нового процесса или явления обычный подход связан с построением той или иной математической модели и проведением расчетов при изменении тех или иных параметров задачи. В этом случае мы имеем поисковый вычислительный эксперимент. Если основу математической модели составляют уравнения с частными производными, то в цикле вычислительного эксперимента исследуется и решается численными методами прямая задача математической физики.
В результате проведения поискового вычислительного эксперимента дается описание наблюдаемым явлениям, прогнозируется поведение исследуемого объекта в тех или иных условиях, возможно и не достижимых в реальных условиях. Такой тип вычислительного эксперимента характерен при проведении теоретических исследований в фундаментальных науках.
С другой стороны, при математическом моделировании технологических процессов в качестве основного может быть выбран оптимизационный вычислительный эксперимент. Для него характерно решение задачи оптимизации по уменьшению затрат, облегчению конструкции и т.д. Для сформулированной математической модели ставится соответствующая задача оптимального управления, задача оптимизации.
Характерным примером могут служить задачи оптимального управления для уравнений математической физики, например, граничного управления, когда граничные условия подбираются так, чтобы минимизировать соответствующий функционал (функционал качества). В этом случае многовариантные расчеты проводятся с целью подобрать управляющие параметры, а результатом является решение в том или ином смысле оптимальное.
При обработке данных натурных экспериментов используется диагностический вычислительный эксперимент. По дополнительным косвенным измерениям делается вывод о внутренних связях явления или процесса. В условиях, когда структура математической модели исследуемого процесса известна, ставится задача идентификации модели, например, определяются коэффициенты уравнений. Диагностическому вычислительному эксперименту обычно ставится в соответствие обратная задача математической физики.
Часто приходится сталкиваться с положением, когда математической модели исследуемого процесса или явления нет и создать ее не представляется возможным. Такая ситуация характерна, в частности, при обработке данных натурного эксперимента. Тогда обработка проводится в режиме "черного ящика" и мы имеем дело с аппроксимационными моделями. При отсутствии математических моделей на основе широкого использования компьютеров проводится имитационное моделирование
Do'stlaringiz bilan baham: |