Mashinani o'rgatish uchun matlabda grafik funktsiyalardan qanday foydalanishga misol



Download 0,54 Mb.
bet1/3
Sana22.04.2023
Hajmi0,54 Mb.
#931134
  1   2   3
Bog'liq
amaliy ishga Qo\'shimcha ma\'lumot


MASHINANI O'RGATISH UCHUN MATLABDA GRAFIK FUNKTSIYALARDAN QANDAY FOYDALANISHGA MISOL:

F araz qilaylik, bizda ikkita xususiyatga (x1 va x2) va ikkilik maqsadli o'zgaruvchiga (y) ega ma'lumotlar to'plami bor. Ikki sinf o'rtasida aniq ajralish mavjudligini ko'rish uchun biz ma'lumotlarni vizualizatsiya qilishni xohlaymiz. Biz ma'lumotlarni ikki sinf uchun turli xil ranglar bilan tarqalish sxemasi sifatida chizishimiz mumkin:

Ushbu misolda, biz avvalo example_dataset.mat deb nomlangan fayldan ma'lumotlar to'plamini yuklaymiz. Keyin ma'lumotlarni maqsadli o'zgaruvchi y asosida ikkita sinfga ajratamiz. Biz ma'lumotlarni chizish uchun x1 o'qi va x2 y o'qi bo'lgan scatter funktsiyasidan foydalanamiz. Ikkinchi klassni chizganimizda oldingi chizma o'chirilmasligi uchun ushlab turish buyrug'idan foydalanamiz. Nihoyat, biz syujetga eksa yorliqlari va afsonani qo'shamiz.

Ushbu syujet ma'lumotlarning taqsimlanishini tasavvur qilish va ikkita sinf o'rtasida aniq ajratish mavjudligini ko'rish imkonini beradi. Agar aniq ajratish mavjud bo'lsa, yangi ma'lumotlarni aniq tasniflash uchun mashinani o'rganish modelini o'rgatish mumkin bo'lishi mumkin. Agar sinflar o'rtasida sezilarli o'xshashlik bo'lsa, yangi ma'lumotlarni aniq tasniflay oladigan modelni o'rgatish qiyinroq bo'lishi mumkin.


Xulosa qilib aytadigan bo'lsak, Matlab-dagi grafik funktsiyalari mashinani o'rganishda ma'lumotlarni vizuallashtirish uchun kuchli vositadir. Ular bizga o'zgaruvchilar o'rtasidagi munosabatlarni o'rganish, naqsh va tendentsiyalarni aniqlash va ma'lumotlar tuzilishi haqida tushunchaga ega bo'lish imkonini beradi.


MASHINANI O'RGATISH UCHUN PHYTONDA GRAFIK FUNKTSIYALARDAN QANDAY FOYDALANISHGA MISOL:

Faraz qilaylik, bizda ikkita xususiyatga (x1 va x2) va ikkilik maqsadli o'zgaruvchiga (y) ega ma'lumotlar to'plami bor. Ikki sinf o'rtasida aniq ajralish mavjudligini ko'rish uchun biz ma'lumotlarni vizualizatsiya qilishni xohlaymiz. Biz ma'lumotlarni ikki sinf uchun turli xil ranglar bilan tarqalish sxemasi sifatida chizishimiz mumkin:



Ushbu misolda, biz avvalo example_dataset.npy deb nomlangan fayldan ma'lumotlar to'plamini yuklaymiz. Keyin biz ma'lumotlarni maqsadli o'zgaruvchi y asosida ikkita sinfga ajratamiz. Biz ma'lumotlarni chizish uchun matplotlib.pyplot kutubxonasidan scatter funksiyasidan foydalanamiz, x o'qida x1 va y o'qida x2. Har bir sinf uchun nuqtalar rangini belgilash uchun c parametridan, syujetga afsona qo'shish uchun label parametridan foydalanamiz. Nihoyat, biz eksa yorliqlarini qo'shamiz va ko'rsatish funktsiyasidan foydalangan holda syujetni ko'rsatamiz.


Ushbu syujet ma'lumotlarning taqsimlanishini tasavvur qilish va ikkita sinf o'rtasida aniq ajratish mavjudligini ko'rish imkonini beradi. Agar aniq ajratish mavjud bo'lsa, yangi ma'lumotlarni aniq tasniflash uchun mashinani o'rganish modelini o'rgatish mumkin bo'lishi mumkin. Agar sinflar o'rtasida sezilarli o'xshashlik bo'lsa, yangi ma'lumotlarni aniq tasniflay oladigan modelni o'rgatish qiyinroq bo'lishi mumkin.


Xulosa qilib aytadigan bo'lsak, Python-da grafik funktsiyalari mashinani o'rganishda ma'lumotlarni vizualizatsiya qilish uchun kuchli vositadir. Ular bizga o'zgaruvchilar o'rtasidagi munosabatlarni o'rganishga, naqsh va tendentsiyalarni aniqlashga va ma'lumotlar tuzilishi haqida tushunchaga ega bo'lishga imkon beradi.



Download 0,54 Mb.

Do'stlaringiz bilan baham:
  1   2   3




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish