Ma’lumotlarning intellektual tahlili fanidan yakuniy nazoratda tushadigan savollar mazmunini akslantirgan savollar banki



Download 0,81 Mb.
bet10/12
Sana23.01.2023
Hajmi0,81 Mb.
#901546
1   ...   4   5   6   7   8   9   10   11   12
Bog'liq
data mining

Yordam vektor mashinalari (SVMs) tasniflash , regressiya va chegaralarni aniqlash uchun foydalaniladigan nazorat qilinadigan o'rganish usullari to'plamidir .
Yordam vektor mashinalarining afzalliklari quyidagilardan iborat:

  • Yuqori o'lchamli bo'shliqlarda samarali.

  • Hali ham o'lchamlar soni namunalar sonidan ko'p bo'lgan hollarda samarali.

  • Qaror qabul qilish funktsiyasida (qo'llab-quvvatlash vektorlari deb ataladigan) o'quv nuqtalarining kichik to'plamidan foydalanadi, shuning uchun u xotiradan ham samaralidir.

  • Ko'p qirrali: qaror funktsiyasi uchun turli yadro funktsiyalari belgilanishi mumkin. Umumiy yadrolar taqdim etiladi, lekin maxsus yadrolarni ham belgilash mumkin.

Yordam vektor mashinalarining kamchiliklari quyidagilarni o'z ichiga oladi:

  • Agar funksiyalar soni namunalar sonidan ko'p bo'lsa, yadro funksiyalarini tanlashda haddan tashqari moslashishdan saqlaning va tartibga solish muddati juda muhimdir.

  • SVMlar to'g'ridan-to'g'ri ehtimollik taxminlarini taqdim etmaydi, ular qimmat besh marta o'zaro tekshirish yordamida hisoblanadi (quyida Ballar va ehtimollar ga qarang).

Scikit-learn-dagi qo'llab-quvvatlovchi vektorli mashinalar kirish sifatida zich ( numpy.ndarrayva unga aylantiriladigan numpy.asarray) va siyrak (har qanday scipy.sparse) namuna vektorlarini qo'llab-quvvatlaydi. Biroq, siyrak ma'lumotlar uchun bashorat qilish uchun SVM dan foydalanish uchun u bunday ma'lumotlarga mos kelishi kerak. Optimal ishlash uchun C-tartibli numpy.ndarray(zich) yoki scipy.sparse.csr_matrix(siyrak) bilan foydalaning.
SVCva ma'lumotlar to'plamida ikkilik NuSVCva LinearSVCko'p sinfli tasnifni amalga oshirishga qodir sinflardir.



72

K-NN (K Nearest Neighbors) algoritmining asosiy afzalliklarini misllar orqali tushuntirib bering.




KNN yoki k-NN deb ham ataladigan k-eng yaqin qo'shnilar algoritmi parametrik bo'lmagan, nazorat qilinadigan o'rganish tasniflagichi bo'lib, u alohida ma'lumotlar nuqtasini guruhlash bo'yicha tasniflash yoki bashorat qilish uchun yaqinlikdan foydalanadi. U regressiya yoki tasniflash muammolari uchun ishlatilishi mumkin bo'lsa-da, u odatda tasniflash algoritmi sifatida ishlatiladi va shunga o'xshash nuqtalar bir-biriga yaqin bo'lishi mumkin degan taxminga asoslanadi.
Tasniflash muammolari uchun sinf yorlig'i ko'pchilik ovozi asosida tayinlanadi, ya'ni ma'lum bir ma'lumot nuqtasi atrofida eng ko'p ifodalanadigan yorliq ishlatiladi. Bu texnik jihatdan "ko'p ovoz berish" deb hisoblansa-da, adabiyotda "ko'pchilik ovoz" atamasi ko'proq qo'llaniladi. Ushbu terminologiyalar orasidagi farq shundaki, "ko'pchilik ovoz berish" texnik jihatdan 50% dan ortiq ko'pchilikni talab qiladi, bu asosan faqat ikkita toifa mavjud bo'lganda ishlaydi. Agar siz bir nechta sinflarga ega bo'lsangiz, masalan, to'rtta toifaga ega bo'lsangiz, sinf haqida xulosa chiqarish uchun sizga 50% ovoz kerak emas; 25% dan ortiq ovoz bilan sinf yorlig'ini belgilashingiz mumkin. Viskonsin-Madison universiteti buni misol bilan yaxshi umumlashtiradi



73

Ma’lumotlarning intellektual tahlilida sun’iy neyron tarmoqlarining o’rni qanday?





Download 0,81 Mb.

Do'stlaringiz bilan baham:
1   ...   4   5   6   7   8   9   10   11   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish