Macroeconomics



Download 3,77 Mb.
Pdf ko'rish
bet64/491
Sana30.12.2021
Hajmi3,77 Mb.
#193895
1   ...   60   61   62   63   64   65   66   67   ...   491
Bog'liq
Ebook Macro Economi N. Gregory Mankiw(1)

duction function.

Let’s take a closer look at some of the properties of this production function.

First, the Cobb–Douglas production function has constant returns to scale. That

is, if capital and labor are increased by the same proportion, then output increas-

es by that proportion as well.

4

C H A P T E R   3



National Income: Where It Comes From and Where It Goes

| 57


4

Mathematical note: To prove that the Cobb–Douglas production function has constant returns to

scale, examine what happens when we multiply capital and labor by a constant z:



F(zK, zL)

A(zK)



(z L)



1

−

.



Expanding terms on the right,

F(zK, zL)

Az



K



z

1

−

L



1

−

.



Rearranging to bring like terms together, we get

F(zK, zL)

Az



z

1

−



K



L

1

−

.



Since z



z



1

−

z, our function becomes



F(zK, zL)

z A K



L

1

−



.

But A K



L

1

−



F(K, L). Thus,

F(zK, zL)

zF(K, L) = zY.

Hence, the amount of output increases by the same factor z, which implies that this production

function has constant returns to scale.




58

|

P A R T   I I



Classical Theory: The Economy in the Long Run

Next, consider the marginal products for the Cobb–Douglas production func-

tion. The marginal product of labor is

5

MPL

= (1 − ) A K



L

− 

,

and the marginal product of capital is



MPK

=  A K

α −1

L

1

−α



.

From these equations, recalling that 

 is between zero and one, we can see what caus-

es the marginal products of the two factors to change. An increase in the amount of

capital raises the MPL and reduces the MPK. Similarly, an increase in the amount

of labor reduces the MPL and raises the MPK. A technological advance that increas-

es the parameter raises the marginal product of both factors proportionately.

The marginal products for the Cobb–Douglas production function can also

be written as

6

MPL

= (1 − )Y/L.

MPK

= Y/K.

The MPL is proportional to output per worker, and the MPK is propor-

tional to output per unit of capital. Y/L is called average labor productivity,

and Y/K is called average capital productivity. If the production function is

Cobb–Douglas, then the marginal productivity of a factor is proportional to

its average productivity.

We can now verify that if factors earn their marginal products, then the para-

meter

 indeed tells us how much income goes to labor and how much goes to



capital. The total amount paid to labor, which we have seen is MPL

× L, equals

(1

− )Y. Therefore, (1 − ) is labor’s share of output. Similarly, the total amount



paid to capital, MPK

× K, equals Y, and  is capital’s share of output. The ratio

of labor income to capital income is a constant, (1

− )/just as Douglas

observed. The factor shares depend only on the parameter 

not on the amounts

of capital or labor or on the state of technology as measured by the parameter A.

More recent U.S. data are also consistent with the Cobb–Douglas production

function. Figure 3-5 shows the ratio of labor income to total income in the

United States from 1960 to 2007. Despite the many changes in the economy

over the past four decades, this ratio has remained about 0.7. This division of

income is easily explained by a Cobb–Douglas production function in which the

parameter

 is about 0.3. According to this parameter, capital receives 30 percent

of income, and labor receives 70 percent.

5

Mathematical note: Obtaining the formulas for the marginal products from the production func-

tion requires a bit of calculus. To find the MPL, differentiate the production function with respect

to L. This is done by multiplying by the exponent (1

− ) and then subtracting 1 from the old

exponent to obtain the new exponent, 

−Similarly, to obtain the MPK, differentiate the pro-

duction function with respect to K.

6

Mathematical note: To check these expressions for the marginal products, substitute in the pro-

duction function for to show that these expressions are equivalent to the earlier formulas for the

marginal products.



The Cobb–Douglas production function is not the last word in explaining the

economy’s production of goods and services or the distribution of national

income between capital and labor. It is, however, a good place to start.

C H A P T E R   3

National Income: Where It Comes From and Where It Goes

| 59



Download 3,77 Mb.

Do'stlaringiz bilan baham:
1   ...   60   61   62   63   64   65   66   67   ...   491




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish