Machine Learning Applications on Agricultural Datasets for Smart Farm Enhancement



Download 2,12 Mb.
Pdf ko'rish
bet12/29
Sana27.09.2022
Hajmi2,12 Mb.
#850453
1   ...   8   9   10   11   12   13   14   15   ...   29
Bog'liq
machines-06-00038

Figure 3.
A (binary) decision tree used to classify and predict values with numerical features.
Also, for this classifier, the split functions are very important: classification (or clustering) tree
analysis consists of the prediction of the class to which the data belongs
P
n
(
c
), with a process called
recursive partitioning
repeated recursively on each split subset. The algorithms that navigate and build
decision trees usually work top-down by choosing a value for the variable at each step that best
splits the set of items. To decide which feature to split at each node in the navigation of the tree,
the
information gain
value is used.
Experimental design: It is the same as that of Task 3, but employing the decision tree, KNN
(K-nearest neighbors), and polynomial regression models.


Machines
2018
,
6
, 38
10 of 22
2.2.5. Task 5—Detection of Faulty Monitoring Stations by Sensor Values (IoT Sensors Dataset)
The task is oriented towards the detection of hardware malfunctions, which occur, for example,
when having data with plausible values, but very different from those gathered from sensors of the
adjacent monitoring stations; it is very important for a business company a sudden recognition of such
anomalous variations in order to avoid future errors.
The main step is the localization of neighboring monitoring stations achieved by their clustering
in an amplitude area (Figure
4
) based on their distances calculated exploiting the Euclidean distance
on their
altitude
,
longitude
, and
latitude
geographical attributes.
Machines 
2018

6
, x FOR PEER REVIEW
10 of 22 
2.2.5. Task 5—Detection of Faulty Monitoring Stations by Sensor Values (IoT Sensors Dataset) 
The task is oriented towards the detection of hardware malfunctions, which occur, for example, 
when having data with plausible values, but very different from those gathered from sensors of the 
adjacent monitoring stations; it is very important for a business company a sudden recognition of 
such anomalous variations in order to avoid future errors. 
The main step is the localization of neighboring monitoring stations achieved by their 
clustering in an amplitude area (Figure 4) based on their distances calculated exploiting the 
Euclidean distance on their 
altitude

longitude
, and 
latitude 
geographical attributes. 

Download 2,12 Mb.

Do'stlaringiz bilan baham:
1   ...   8   9   10   11   12   13   14   15   ...   29




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish