ВП — воздухоподогреватель; ГТ — газовая турбина; Р — регенератор; ВК—воздушный компрессор; Г— электрогенератор; ПУ — пусковое устройство
Рис. 9.3. Конструктивные схемы различных типов ГТУ:
а — ГТУ простого цикла без регенерации; б — ГТУ простого цикла с регенератором теплоты уходящих газов; в — двухвальная ГТУ с двухступенчатым подводом теплоты топлива: Т — подвод топлива; КВД. КПД — воздушные компрессоры высокого и низкого давления; ГТВД, ГТНД — газовые турбины высокого и низкого давления
В Советском Союзе работают газотурбинные электростанции с ГТУ типов ГТ-25-700, ГТ-45-3, ГТ-100-750-2 и других с начальной температурой газов перед газовой турбиной 700—950 °С. Ленинградским металлическим заводом разработаны проекты новой серии ГТУ мощностью 125—200 МВт при начальной температуре газов соответственно 950, 1100 и 1250 °С. Они выполнены по простой схеме с открытым циклом работы, одновальными, без регенератора (табл. 9.1). Тепловая схема газотурбинной установки ГТ-100-750-2 ЛМЗ показана на рис. 9.4,а, а компоновка электростанции с такими турбинами — на рис. 9.4,б. Эти ГТУ эксплуатируются на Краснодарской ТЭЦ, на ГРЭС им. Классона Мосэнерго, на пиковой ТЭС в г. Инота Венгерской Народной Республики и др.
Таблица 9.1
|
Показатели ГТУ
|
Газотурбинная
установка
|
Электрическая
мощность, МВт
|
Расход возду-
ха через ком-
прессор,кг/с
|
Степень сжа-
тия в компрес-
соре
|
Начальная
тем-ра газов,
оС
|
Электрический
КПД,%
|
ГТ-25-700*
|
25
|
194,5
|
4,7/9,7
|
700
|
27
|
ГТ-35-770
|
35
|
213
|
6,7
|
770
|
27,5
|
ГТЭ-45-2**
|
54,3(52,9)
|
271
|
7,7
|
900
|
28(27,6)
|
ГТ-100-750-2М*
|
105
|
460
|
4,5/6,4
|
750/750
|
29
|
ГТЭ-150
|
150
|
630
|
13
|
1100
|
31
|
ГТЭ-200
|
200
|
630
|
15,6
|
1250
|
34
|
М9 7001
«Дженерал электрик»
|
59
|
239
|
9,6
|
980
|
30,7
|
* Турбина и компрессор двухвальные; вал с турбиной и компрессором высокого давления имеет повышенную частоту вращения.
** При работе на природном газе (жидком газотурбинном топливе).
Рис. 9.4. Газотурбинная установка ГТ-100-750-2 ЛМЗ:
а — тепловая схема: 1—8 — подшипники ГТУ; / — воздух из атмосферы; II — охлаждающая вода; III— топливо (природный газ); /V — уходящие газы; V — пар к пусковой турбине (р=1,2 МПа, t=235°С); ГШ— глушитель шума; КНД — компрессор низкого давления; ВО — воздухоохладители; КВД — компрессор высокого давления; КСВД — камера сгорания высокого давления; ТВД — турбина высокого давления; КСНД — камера сгорания низкого давления; ТНД — турбина низкого давления; ВП — внутренний подшипник; В — возбудитель; ПТ — пусковая турбина; АПК — антипомпажные клапаны за КНД; б — компоновка (поперечный разрез):/ — КНД; 2-ВО; 3 - КВД; 4 - КСВД; 5 - ТВД; 6 - КСНД; 7-ТНД; 8 — ПТ; 9 — дымовая труба; 10 — антипомпажный клапан (АПК); Л—электрогенератор (Г); 12— мостовой кран; 13— фильтры для очистки воздуха; 14 — глушители шума; 15 — маслонасосы системы регулирования; 16— теплофикационные подогреватели; /7 — шиберы на выхлопных газоходах; 18 — маслоохладители
Жидкое газотурбинное топливо, применяемое для отечественных ГТУ, на электростанции подвергается фильтрации и промывке от солей щелочных металлов. Затем в топливо добавляют присадку с содержанием магния для предотвращения ванадиевой коррозии. По данным эксплуатации такая подготовка топлива способствует длительной работе газовых турбин без загрязнения и коррозии проточной части.
Ростовским отделением АТЭП разработан типовой проект пиковой газотурбинной электростанции с ГТУ ГТЭ-150-1100. На рис. 9.5 приведена принципиальная тепловая схема такой ГТУ, рассчитанной на сжигание жидкого газотурбинного топлива или природного газа. ГТУ выполнена по простой открытой схеме, роторы газовой турбины и компрессора расположены в одном транспортабельном корпусе, что значительно сокращает сроки монтажа и трудозатраты. Газотурбинные агрегаты устанавливаются поперечно в машинном зале электростанции с пролетом 36 и ячейкой блока в 24 м. Дымовые газы отводятся в дымовую трубу высотой 120 м с тремя металлическими газоотводящими стволами.
Рис. 9.5. Принципиальная тепловая схема газотурбин ной установки ЛМЗ ГТЭ-150-1100:
ВК — вспомогательный компрессор пневмораспыления топлива: ПТ — паровая турбина; Р — редуктор блока разгонного устройства; ЭД — электродвигатель вспомогательного компрессора ГТ— газовая турбина; Т— подвод жидкого топлива, соответствующего ГОСТ 10743-75, = 42,32 МДж/кг (10 110 ккал/кг) ДТ — дымовая труба; АПК — антипомпажный клапан
Важной особенностью газотурбинных установок является зависимость их показателей от параметров наружного воздуха, а в первую очередь от его температуры. Под ее влиянием изменяется расход воздуха через компрессор, соотношение внутренних мощностей компрессора и газовой турбины и в итоге — электрическая мощность ГТУ и ее КПД. В МЭИ выполнены многовариантные расчеты работы ГТЭ-150 на жидком газотурбинном топливе и на тюменском природном газе в зависимости от температуры и давления наружного воздуха (рис. 9.6, 9.7). Полученные результаты подтверждают повышение тепловой экономичности ГТУ с ростом температуры газов перед газовой турбиной и с понижением температуры наружного воздуха . Повышение температуры от =800°С до = =1100°С повышает электрический КПД ГТУ на 3% при = -40 °С и на 19% при = 40 °С. Понижение температуры наружного воздуха с +40 до -40°С приводит к значительному увеличению электрической мощности ГТУ. Для различных начальных температур это увеличение составляет 140—160%. Для ограничения роста мощности ГТУ при понижении температуры наружного воздуха и с учетом возможности перегрузки электрогенератора (в рассматриваемом случае типа ТГВ-200) приходится воздействовать либо на температуру газов перед газовой турбиной, уменьшая расход топлива (кривые 4 на рис. 9.6 и 9.7), либо на температуру наружного воздуха, подмешивая небольшое количество уходящих газов (2—4%) к засасываемому компрессором воздуху. Постоянный расход воздуха в диапазоне нагрузок 100—80% можно поддерживать также прикрытием входного направляющего аппарата (ВНА) компрессора ГТУ.
Рис. 9.6. Зависимость электрической мощности ГТУ от температуры наружного воздуха :
1- =1100°С; 2- = 950°С; 3 - = 800 °С; 4- = ; — работа ГТУ на природном газе; работа ГТУ на жидком топливе
Рис. 9.7. Зависимость электрического КПД ГТУ от температуры наружного воздуха (обозначения см. на рис. 9.6)
Изменение электрического КПД в сторону его уменьшения особенно значительно при температуре наружного воздуха выше 5-10 °С (рис. 9.7). С повышением температуры наружного воздуха от +15 до +40 СС этот КПД уменьшается на 13—27% в зависимости от температуры газов перед газовой турбиной и вида сжигаемого топлива.
Повышение наружной температуры воздуха увеличивает коэффициент избытка воздуха за газовой турбиной и температуру уходящих газов, что способствует ухудшению энергетических показателей ГТУ.
Повышение атмосферного давления приводит к повышению расхода воздуха через компрессор вследствие увеличения плотности воздуха. С ростом этого давления в диапазоне кПа (720—800 мм рт. ст.) при постоянном значении температуры наружного воздуха электрическая мощность ГТУ возрастает примерно на 10 %, тогда как электрический КПД установки остается практически постоянным.
Расчет принципиальной тепловой схемы ГТУ производят, последовательно рассчитывая показатели работы компрессора и газовой турбины. Для определения энергетических показателей одноступенчатой простой ГТУ (см. рис. 9.1) с достаточной точностью можно использовать следующие зависимости:
Мощность, кВт, привода компрессора
где — удельная теплоемкость воздуха, кДж/(кг-К); — температура наружного воздуха, К; — степень сжатия воздуха в компрессоре; — показатель изоэнтропы; — политропный КПД компрессора; — расход воздуха через компрессор, кг/с.
Расход топлива в камере сгорания, кг/с,
где — температура воздуха за компрессором, °С; — утечка воздуха через концевые уплотнения компрессора, кг/с; — расход воздуха на охлаждение лопаточного аппарата газовой турбины, кг/с; — КПД камеры сгорания.
Внутренняя мощность газовой турбины, кВт,
Энтальпию газов , кДж/кг, при температурах на входе и выходе газовой турбины приближенно можно определить по выражению
.
Поправочный коэффициент, учитывающий влияние сжигаемого топлива на состав газов, можно оценить приближенно: =1,0125 при сжигании жидкого топлива, при сжигании природного газа.
Температуру газов за газовой турбиной, °С,
определяют, принимая сначала ; внутренний относительный КПД газовой турбины ; — степень расширения газов в газовой турбине с учетом потерь давления воздуха в камере сгорания и на выхлопе турбины. По полученному значению определяют значение , а затем рассчитывают истинное значение температуры tк.т, подставляя в (20.5) значения
k=0.5(kн.т-kк.т).
Электрическая мощность ГТУ, кВт,
где .
Электрический КПД ГТУ
.
Do'stlaringiz bilan baham: |