Лекция Развитие топливно-энергетического комплекса (тэк) страны


Оборотные системы технического



Download 8 Mb.
bet21/37
Sana12.04.2022
Hajmi8 Mb.
#544630
TuriЛекция
1   ...   17   18   19   20   21   22   23   24   ...   37
Bog'liq
Лекции ТЭС и АЭС

Оборотные системы технического водоснабжения
В оборотных системах обязательным яв­ляется наличие водоохладителя. Его функции могут выполнять водоем-охладитель, градир­ни или брызгальные бассейны.
Система водоснабжения с водоемом-охла­дителем— наиболее распространенная на дей­ствующих конденсационных электростанциях. В этой системе главный корпус электростан­ции размещают обычно близ берега водоох­ладителя, а циркуляционные насосы — в бере­говой насосной.
Требуемая для охлаждения технической воды площадь водохранилища зависит от мощности электростанции, количества сбра­сываемой теплоты, климатических условий района и формы водоема (пруда). Его со­оружают, используя естественные или искус­ственные озера, небольшие реки, которые перегораживают плотинами для затопления необходимой территории (рис. 6.7). Глубина водоема-охладителя должна быть не менее 3.5—4 м.

Рис. 6.7. Схемы водоемов-охладителей:


а — водоем вытянутой формы; б — водоем округлой формы; в — водоем, сооружаемый вне долины реки; 1 — площадка электростанции; 2 — плотина; 3—ограждающая дамба; 4 — водозаборное сооружение; 5 — отводящий канал; 6 — струенаправляющая дамба; 7 — струераспределительное сооружение; 8 — транзитный поток; 9 — водоворотная зона



Рис. 6.8. Зависимость температуры охлаждающей во­ды от параметров наружного воздуха и совершенства водоохладителя:


а— теоретический предел охлаждения воды при испарительном охлаждении т. в зависимости от температуры и влажности наружного воздуха; б — температура охлаждающей воды пос­ле водоохладителя в зависимости от теоретического предела охлаждения при изменении температуры наружного воздуха

Использование водоемов-охладителей име­ет ряд преимуществ перед использованием градирен: надежность технического водоснаб­жения, более низкие и устойчивые темпера­туры охлаждающей воды tв1, значительно меньшие потери воды на ее испарение в охла­дителе, большая простота эксплуатации систе­мы (особенно зимой), меньшая высота подъ­ема охлаждающей воды (4—8 м) и значительно более низкий расход электроэнергии на перекачку, возможность комплексного ис­пользования водоема-охладителя для рыбо­разведения, орошения сельскохозяйственных угодий, отдыха и спорта трудящихся.


Рис. 6.9. Градирня противоточного типа с естественной тягой:


а — разрез и фасад; б — план; в—деталь; г, д — градирня производительностью до 100 000 м3/ч с башней из стального карка­са, обшитого алюминиевым листом (г) и из монолитного железобетона (д): 1—под­водящие трубопроводы; 2 — водораспреде­лительные трубопроводы с разбрызги­вающими соплами; 3 — щиты ороситель­ного устройства пленочного типа; 4— кар­кас оросителя; 5 — водоуловитель; 6 — во­досборный бассейн; 7 — вытяжная желе­зобетонная башня гиперболоидной фор­мы; 8 — воздухонаправляющие щиты; 9— отводящие трубы; 10—светоограждение




Охлаждение в водоохладителе происходит в результате соприкосновения воды с возду­хом при ее движении, как в границах аква­тории, так и по высоте водяного слоя. Посту­пающая в больших количествах с нагретой в конденсаторах водой теплота (до 1 миллио­на ГДж/сут на крупных ТЭС) отводится в основном путем испарительного охлаждения. Такое охлаждение значительно повышает ин­тенсивность теплообмена между водой и воз­духом. При этом температура воды может иметь значение ниже температуры окружаю­щего воздуха. Эта разница возрастает с уменьшением относительной влажности возду­ха (рис. 6.8). Как видно из этого рисунка, температура охлаждающей воды не достига­ет теоретической температуры влажного термометра на значение предела охлаждения ,°С, характеризующего совершен­ство работы охладителя.


Активная площадь водоема Fа, км2, опре­деляется по формуле

где =0,4-0,9 — коэффициент использования водоема, зависящий от его формы, наличия застойных зон, способа забора воды; Fобщ— общая площадь водоема. Необходимую пло­щадь водоохладителя, км2/МВт, можно при­ближенно определить по удельной площади:
.
Значение fуд принимают в пределах 5— 6 км2 на 1000 МВт для КЭС на сверхкрити­ческих параметрах пара и до 10—11 км2 на 1000 МВт для АЭС на насыщенном водяном паре.
На большей части водоемов-охладителей применена гравитационная схема использования их поверхности для охлаждения цир­куляционной воды. При этом нагретая в кон­денсаторах турбин вода должна отводиться в водоем на значительном расстоянии от ме­ста приема, что обеспечит необходимое ее охлаждение на пути от места слива до места забора (см. рис. 6.7). Более рациональной является осуществляемая в настоящее время АТЭП схема объемной циркуляции воды, в водоеме. Глубинный водозабор располагается в непосредственной близости от сброса по­догретой в конденсаторах воды. Последняя довольно устойчиво распространяется по по­верхности водохранилища за счет темпера­турной стратификации — градиента, создавае­мого теплой водой. При охлаждении воды повышается ее плотность, и она опускается в придонные области водоема, подходя к во­дозабору.
Потребление воды из водоема-охладителя на крупных ТЭС и АЭС достигает (15-30) 106 м3/сут. Потери воды на испарение за­висят от режима работы и времени года и составляют 0,5—1 %. Для снижения мине­рализации воды за счет ее повышенного ис­парения предусматривают санитарный про­пуск воды и регулярную продувку водоема пропуском воды во время весеннего поло­водья. Потери на фильтрацию, более значи­тельные в первые несколько лет эксплуата­ции, затем снижаются.
Водоемы-охладители после подготовки местности и постройки плотины с ее соору­жениями заполняют за счет притока воды из верховьев реки либо перебросом воды из постороннего источника (наливные водоемы) в течение нескольких лет. После достижения проектной отметки приток воды используется для компенсации испарения, фильтрации, для поддержания качества воды с учетом требо­ваний расположенных ниже по течению по­требителей: промышленные предприятия, оро­шение земель, рыбное хозяйство и т. п.
Водоемы-охладители проектируют с по­мощью номограмм и с привлечением методов гидротехнического моделирования.

Download 8 Mb.

Do'stlaringiz bilan baham:
1   ...   17   18   19   20   21   22   23   24   ...   37




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish