Виды воздействия светового излучения на вещество весьма разнообразны. В частности, под действием света могут происходить реакции химических превращений веществ (фотохимическая реакция). Одни из этих реакций приводя к образованию сложных молекул из простых (например, образование хлористого водорода при освещении смеси водорода и хлора), другие – к разложению молекул на составные части (например, фотохимическое разложение бромистого серебра с выделением металлического серебра и брома), в результате третьих молекула не изменяет своего состава, изменяется лишь ее пространственная конфигурация, приводящая к изменению ее свойств (возникают тереоизомеры).
Фотохимические процессы вызываются только поглощаемым светом, действующим на движение валентных электронов в атомах и молекулах. В основе таких процессов лежит явление фотоэффекта.
Многие фотохимические превращения идут в два этапа. Первичный процесс характеризуется изменением молекулы под действием поглощенного ею кванта света – это собственно фотохимическая реакция. Во всех вторичных процессах мы имеем дело с сугубо химическими реакциями продуктов первичных реакций. Так при образовании хлористого водорода первичным является лишь расщепление молекулы хлора, поглотившей квант света, на атомарный хлор, который далее через день вторичных химических реакций приводит к образованию конечного продукта. Для первичных процессов справедлив закон эквивалентности. Каждому поглощенному кванту света соответствует превращение одной поглотившей свет молекулы. В общем случае количество химически прореагировавшего вещества пропорционально поглощенному световому потоку и времени его воздействия. Величина коэффициента пропорциональности определяется природой вторичных процессов.
Фотохимическую реакцию может вызвать лишь излучение, энергия кванта которого больше энергии активации молекулы. Этим объясняется повышение фотохимической активности ультрафиолетового излучения.
Следует отметить, что фотохимическими процессами объясняются многие природные явления, такие как синтез углеводов в листьях растений или чувствительность глаза к световому излучению.
Фотохимическая реакция разложения бромистого серебра (и других его коллоидных солей) использована для получения фотографических изображений. Изображение представляет собой локальные почернения фотоматериала из-за выделившихся под действием отраженного от объекта света частичек серебра.
К фотохимическим явлениям относится и так называемый фотохромный эффект, который состоит в следующем.
Некоторые химические вещества обычно со сложным строением молекулы, изменяют свою окраску под действием видимого или ультрафиолетового излучения. В отличие от обычного выцветания красок этот эффект обратим. Первоначальная окраска или отсутствие таковой восстанавливается через некоторое время в темноте, под действием излучения другой частоты или при нагревании. Но наведенную окраску можно и сохранить сколь угодно долго, если охладить фотохромное вещество или обработать его некоторыми газами, фотохромизм восстанавливается при соответствующей вторичной обработке.
Скорость окрашивания и интенсивность окраски зависят не только от структуры молекул самого фотохромного соединения, но и от среды в которую оно может быть введено (стекло, керамика, жидкость, пластмасса, ткань и др.).
Многие фотохромные вещества при облучении интенсивным светом могут темнеть, причем их "быстродействие" достигает несколько микросекунд. Это позволяет использовать фотохромные тела как сверхзатворы для защиты глаз или светочувствительных приборов от неожиданной вспышки мощного излучения. Есть возможность использовать их как регуляторы светопропускания в зависимости от интенсивности света.
Фирма "Корнинг Гласс" выпустила светозащитные очки с фотохромными стеклами, изменяющими степень светопропускания в зависимости от интенсивности потока ультрафиолетовых лучей.
Также фотохромный материал применяется в:
- устройстве для представления информации в трехмерной форме, отличающееся тем, что с целью улучшения стереоскопического восприятия трехмерных изображений и упрощения устройства оно содержит три параллельных ряда плоских панелей, на противоположных концах которых нанесены изготовленные из фотохромного материала активные зоны одна из которых служит для просмотра изображения, а другая - для обработки информации, причем все панели установлены на разной высоте на трех осях вращения, сдвинутых относительно друг друга на 120 градусов;
- устройстве по пункту 1, отличающемся тем, что над каждой из фотохромных информационных панелей в зоне, противоположной зоне просмотра, установлена матричная излучающая панель;
- устройстве по пункту 1, отличающееся тем, что к каждой из панелей подведена линейка волоконных световодов связанных с источником импульсов излучения активизирующего фотохромный материал;
- устойчивом фотохромном воспроизводящем устройство, предназначенном для работы с пленкой, покрытой фотохромным материалом, содержащим сахарин, имеется центральная камера, в которой находится электроннолучевая трубка. На нормальной прозрачной пленке образуются непрозрачные участки обратимого изображения соответствующего изображению на экране электронно-лучевой трубки. При обработки пленки двуокисью серы, находящейся в газообразном состоянии, проэкспонированные участки фотохромного материала остаются непрозрачными. После этого газ откачивается и камеру подается тепловое излучение, обращающее те обработанные газообразной двуокисью серы участки, которые были прозрачными во время экспонирования. Участки пленки, временно сделавшиеся не прозрачными под воздействием изображения, проявляющегося на экране электронно-лучевой трубки, постоянно фиксируются. В состав конструкции устройства входит камера для ввода пленки и камера для вывода пленки, связанные с вакуумной откачивающей системой. Выходящая из центральной камеры двуокись серы в газообразном состоянии засасывается вакуумной откачной системой и не попадает в атмосферу.
В основе фотохимических процессов лежит взаимодействие излучения с электронами вещества. Это предполагает наличие возможности управлять ходом фотохимической реакции воздействие электрического поля. Возможно, что природа недавно открытого фотоэлектрического эффекта объясняется стимуляцией фотохромного эффекта электрическим полем. Эффект состоит в следующем: На тонкую прозрачную пластину керамики с включением железа, свинца лантана, циркония и титана, помещенную в постоянное электрическое поле, перпендикулярное ее поверхности, проектируют негативное изображение видимых и ультрафиолетовых лучах. При этом в пластине появляется видимое позитивное изображение здесь наблюдается интересная особенность: При изменении направления поля на обратное, изображение из позитивного становится негативным. Изображение устойчиво и стирается лишь при равномерном облучении ультрафиолетовыми лучами с одновременной переполюсовкой поля.
Американские специалисты, открывшие этот эффект, предполагают его использовать в устройствах для хранения визуальной информации.
Фотогальванический эффект – фото-ЭДС, возникающая в полупроводнике при поглощение в нем электромагнитного излучения. Фото-ЭДС обусловлена пространственным разделением генерируемых излучением носителей заряда. При неравномерном освещение кристалла концентрация носителей заряда велика вблизи облучаемой грани и мала в затемненных участках. Носители диффундируют от облучаемой грани и между освещенными и затемненными участками возникает диффузионная фото-ЭДС, которая в полупроводниках мала и практического применения не имеет.
Вентильная фото-ЭДС возникает в неоднородных полупроводниках, а также у контакта полупроводник – металл. В области неоднородности существует внутреннее электрическое поле, которое ускоряет генерируемое излучение не основные неравновесные носители. В результате фото носители разных знаков пространственно разделяются.
При поглощение излучения свободными носителями заряда в полупроводнике вместе с энергией фотонов поглощается их импульс. В результате появляется фото-ЭДС светового давления, но она очень мала. Фото-ЭДС светового давления используется в быстродействующих приемниках излучений, предназначенных для измерения мощности и формы импульсов излучения лазеров [3].
Do'stlaringiz bilan baham: |