Лекции по Электрическому приводу



Download 1,27 Mb.
bet33/78
Sana21.02.2022
Hajmi1,27 Mb.
#43401
TuriУчебное пособие
1   ...   29   30   31   32   33   34   35   36   ...   78
Bog'liq
Методичка по ФОИТ

Эффект Малтера применяется:
- способ контроля глубины нарушенного поверхностного слоя полупроводниковых пластин, отличающихся тем, что с целью обеспечения возможности автоматизации и упрощения процесса контроля, пластину нагревают до температуры ,соответствующей максимуму экзоэлектронной эмиссии, которую контролируют одним из известных способов, а по положению пика эмиссии определяют глубину нарушенного слоя;
- электронная турбина, содержащая помещенные в вакуумный баллон катод и анод и размещенный между ними ротор с лопастями, отличающийся тем, что с целью увеличения крутящегося момента на валу турбины ее ротор выполнен в виде набора соосных цилиндров с лопастями, между цилиндрами роторов установлены неподвижные направляющие лопатки имеют покрытие, обеспечивающее вторичную электронную эмиссию, например, сурьмяно-цезиевое. В случае автоэлектронной эмиссии внешнее электрическое поле превращают потенциальный порог на границе тела в барьер конечной ширины и уменьшает его высоту относительно высоты первоначального порога, вследствие чего становиться возможным квантовомеханическое тунелирование электронов сквозь барьер. При этом эмиссия происходит без затраты энергии электрическим полем;
- способ измерения объемной концентрации углеводородов в вакуумных системах путем термического разложения углеводородов на нагретом острийном автокатоде и регистрации времени накопления пиролетического углерода до одной из эталонных концентраций, отличающихся тем, что с целью повышения точности измерения время накопления углерода регистрируют по изменению значения автоэлектронного тока. Наличие на поверхности металла тонких диэлектрических пленок в сильных полях не мешает походу электронов через потенциальный барьер. Это явление называется эффектом Молтера;
- электронно-лучевая запоминающая трубка с экранными сетками, отличающаяся тем, что с целью хранения записи неограниченно долгое время одна из экранных сеток, служащая потенциалоносителем, изготовлена из металлов, излучающих вторично-электронную эмиссию, покрытых пленкой диаэлектрика и обладающих эффектом.
Туннелирование электронов по потенциальным барьерам широко используется в специальных полупроводниковых приборах – туннельных диодах. На высоту туннельного барьера можно влиять не только электрическим полем, но и другими воздействиями.
Так же это используется в устройстве позволяющем обнаруживать магнитные домены с внутренним диаметром не более 1 мк, основано на определении изменения уровня Ферми исследуемого электрода по изменению высоты туннельного барьера и по его воздействию на величину сопротивления, туннельного перехода. Устройство применимо в магнитных долговременных и оперативных запоминающих устройствах.
А так же в устройстве для измерения контактного давления ленты на магнитную головку, содержащее упругие элементы и датчики, отличающиеся тем, что с целью осуществления одновременно интегрального и дискретного измерения указанного давления, устройство измерения выполнено в виде полуцилиндра, состоящего из упругих элементов, образующих на корпусе магнитной головки, при этом другой край полуцилиндра выполнен свободным, а под каждой полосой гребенки установлен датчик, например, с туннельным эффектом.
Туннельный эффект – преодоление микрочастицей потенциального барьера в случае, когда ее полная энергия меньше высоты барьера. Вероятность прохождения сквозь барьер – главных фактор, определяющий физические характеристики туннельного эффекта. Эта вероятность тем больше, чем меньше масса частицы, чем уже потенциальный барьер и чем меньше энергии недостает частице, чтобы достичь высоты барьера. В случае одномерного потенциального барьера характеристикой служит коэффициент прозрачности барьера, равный отношению потока прошедших сквозь него частиц к подающему на барьер потоку. Аналог туннельного эффекта в волновой оптике: проникновение световой волны внутрь отражающего покрытия в условиях, когда с точки зрения геометрической оптики происходит полное внутреннее отражение [3].
Применение: в радиоэлементах, основанных на туннельном эффекте – туннельных диодах.
Термоэлектронная Эммисия – испускание электронов нагретыми телами в вакууме или других средах. Выйти из тела могут только те электроны, энергия которые больше энергии, покоящегося электрона вне тела. Число таких электронов при Т-300 К очень мало и экспоненциально возрастает с температурой. Поэтому ток термоэлектронной эмиссии заметен только для нагретых тел. При отсутствии "отсасывающего" электрического поля вылетевшие электроны образуют вблизи поверхности эмиттера отрицательный пространственный заряд, ограничивающий ток термоэлектронной эмиссии.
Термоэлектронная эмиссия лежит в основе работы термоэлектрических катодов, применяющихся во многих электровакуумных и газоразрядных приборах.
Термоэлектронный преобразователь энергии – устройство преобразования тепловой энергии в электрическую на основе вышеописанного явления. Его действие основано на следующем процессе: с катода (поверхность горячего металла с большой работай выхода) "испаряются" электроны, которые пролетев межэлектродный промежуток, "конденсируются" на аноде (холодный метал); во внешней цепи течет ток КПД его превышает 20 % [3].
Ионно-электронная эмиссия – испускание электронов поверхностью твердого тела в вакуум при бомбардировке поверхности ионами; Коэффициент ионно-электронной эмиссии у равен отношению числа эмитированных электронов ni к числу падающих на поверхность ионов nj. Для медленных ионов у практически не зависит от энергии и массы mj, но зависит от их заряда (для однозарядных ионов у ≈ 0,2, для многозарядных у может превышать единицу).
Ионно-электронная эмиссия зависит также от энергии ионизации и возбуждения ионов от работы выхода вещества мишени. Когда скорость ионов достигает 6-7-106 см/с, характер ее резко изменяется.
Вначале у растет пропорционально ej, затем как (si)'2, при Vj = 108 - 109 см/с достигается максимум, затем идет спад.
Если к поверхности твердого тела подходит медленный ион, то электрон твердого тела может перейти к иону и нейтрализовать его. Такой переход сопровождается выделением энергии и часть электронов, получивших ее, может покинуть тело. При бомбардировке быстрыми ионами происходит интенсивный электрообмен, при котором электрон вылетает в вакуум [3].

Download 1,27 Mb.

Do'stlaringiz bilan baham:
1   ...   29   30   31   32   33   34   35   36   ...   78




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish