Лекции по Электрическому приводу


Рентгеновское и гамма-излучения



Download 1,27 Mb.
bet61/78
Sana21.02.2022
Hajmi1,27 Mb.
#43401
TuriУчебное пособие
1   ...   57   58   59   60   61   62   63   64   ...   78
Bog'liq
Методичка по ФОИТ

17.2. Рентгеновское и гамма-излучения




Рентгеновское излучение, открыто в 1895 году физиком Рентгеном, имеет ту же электромагнитную природу, что гамма излучение испускаемые ядрами атомов радиоактивных элементов, поэтому оба вида изучения подчиняются одинаковым закономерностям при взаимодействии с веществом. Принципиальная разница между двумя этими видами излучения заключения в механизме их возникновения. Рентгеновское излучение – внеядерного происхождения, гамма излучение – продукт распада ядер.
Рентгеновское излучение возникает либо при торможении заряженных частиц (электронов) высокой энергии в веществе (сплошной спектр) (см. 17.3. "Тормозное излучение"), либо при высоко-энергетических переходах внутри атома (линейчатый спектр). Недавно установлено, что рентгеновское излучение может также возникать в результате явления адгезолюминесценции, которая наблюдается при очень быстром отрыве от гладкой поверхности липкой ленты. Такой быстрый отрыв может происходить, например, при быстром качении по металлической поверхности цилиндра, покрытого липкой лентой. В этом случае пленка и металлическая поверхность образуют как бы обкладки микроскопического конденсатора, напряженность поля в котором может достигать сотни тысяч электрон вольт. Электроны, разогнанные в подобном миниконденсаторе, тормозятся, испуская при этом рентгеновское излучение.
Рентгеновские лучи применяют для просвещения различных веществ с целью выявления скрытых эффектов. При деформации неподвижного микрокристалла, на рентгенограммах наблюдается размытие в определенных направлениях интерференционных пятен (явление астеризма). Появление астеризма объясняется тем, что монокристалл в процессе деформации разбивается на отдельные участки (фрагменты) размером 1 .. 0,1 мкм. С увеличением деформации монокристалла интерференционные пятна удлиняются. По направлению и степени растяжения пятна можно судить о количестве размере и форме фрагмента и исследовать характер протекания деформации.
Из других областей применения рентгеновских лучей можно назвать:
- рентгеновскую дефектоскопию; занимающуюся просвечиванием твердых тел с целью установления размера и места нахождения дефекта внутри материала;
- рентгеновскую спектроскопию, рентгеноспектральный анализ. Основная цель – исследование электронного строения веществ по их рентгеновским спектрам. Области применения - исследования химического строения веществ, технологические процессы горнорудной и металлургической промышленности – рентгеновскую микроскопию широко применяют для исследования объектов непрозрачных для видимого света и электронов (биология, медицина, минералогия, химия, металлургия).
Пример применения:
- способ измерения моментов инерции неоднородных, несвободных тел, заключающийся в поступательном перемещении исследуемого тела относительно пространственной оси, отличающийся тем, что с целью устранения влияния напряжения мускулатуры исследуемого, поперек оси перемещения исследуемого передвигают источник гамма излучения с детектором, регистрирующим интенсивность прошедшего через равные участки тела гамма излучения.
Взаимодействие рентгеновского и гамма излучения с веществом происходят посредством трех основных процессов: фотоэлектрического поглощения (фотоэффекта), рассеяния и эффекта образования пар.
Фотоэффект. При фотоэффекте рентгеновский или гамма-квант передает всю энергию электрону атома. При этом, если электрон получает энергию, большую, чем энергия связи его в атоме, то он вылетает из атома. Этот электрон называется фотоэлектроном. При потере атомами фотоэлектронов освободившиеся места в электронных оболочках в дальнейшем заполняются электронами с внешних оболочек. Переход электронов на более близкую к ядру оболочку сопровождается испусканием кванта характеристического излучения, которое можно зарегистрировать, например, фотоэмульсией.
При малых энергиях квантов (Е 0,5 МэВ) фотоэлектроны вылетают преимущественно в направлениях, перпендикулярных направлению распространения излучения. Чем выше энергия квантов, тем ближе к их первоначальному направлению движение выбрасываемых фотоэлектронов. Процесс образования фотоэлектронов приводит к ионизации облучаемого вещества, что находит большее применение для интенсификации различных технологических процессов.

Download 1,27 Mb.

Do'stlaringiz bilan baham:
1   ...   57   58   59   60   61   62   63   64   ...   78




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish