Рассеяние рентгеновского и гамма излучения. Различают два основных процесса рассеяния: комптоновское или некогерентное (эффект Комптона) и когерентное рассеяние.
При эффекте Комптона происходит упругое соударение первичного кванта со свободным электроном вещества. Комптоновское рассеяние представляет собой взаимодействие кванта с электроном, при котором, в отличии от фотоэффекта, квант передает электрону не всю энергию, а только ее часть, отклоняясь при этом от своего первоначального направления в некоторый угол а электрон, получивший некоторое количество энергии, начинает двигаться под углом к направлению движения рентгеновского или гамма-кванта. В результате появляется рассеянный квант большей длиной волны, изменившей первоначальное направление, и электрон отдачи (комптоновский электрон), получивший часть энергии кванта. Комптоновские электроны характеризуются непрерывным спектром от ничтожно малых значений до максимальной величины (если они выбрасываются в направлении движения кванта).
В случае, если энергия кванта сравнима с энергией связи электрона в атоме, происходит когерентное рассеяние квантов. При этом, когда электромагнитная волна встречается с электроном, последний начинает колебаться с частотой этой волны и излучает: энергию в виде рассеянной волны. Энергия кванта при этом не изменяется. Движение электронов в атоме взаимосвязано, поэтому излучение, рассеянное одним электроном, будет интерферировать с излучением, рассеянным другими электронами этого же атома. Рассеянные гамма кванты несут информацию о структуре облучаемого вещества, поэтому рассеянное излучение можно использовать для различных измерительных целей.
Пример применения:
- способ определения угла смачивания и поверхностного или межфазового натяжения непрозрачных систем при высоких температурах фотографирование контура, которое осуществляется в пучках мягких гамма лучей полученных от радиоактивных изотопов, например иридия-192, тулия-170 или европия-154 или европия-156.
Эффект Комптона – упругое рассеивание электромагнитного излучения на свободных (или слабо связанных) электронах, сопровождается увеличением длины волны; наблюдается при рассеянии излучения малых длин волн - рентгеновского и γ – излучений. Электрон поглощает (в точке 1, рис. 17.2) падающий на него фотон γ и переходит из начального в промежуточное состояние е*, после чего виртуальный электрон испускает (в точке 2) новый, конечный фотон γ' а сам переходит в конечное состояние е'.
Рис. 17.2. Эффект Комптона
Интенсивность комптоновского рассеивания зависит как от угла рассеяния, так и от длины волны падающего излучения. В угловом распределении рассеянных фотонов есть асимметрия: большая часть электронов рассеиваются по направлению вперед, причем эта асимметрия увеличивается с ростом δγ. Полная интенсивность комптоновского рассеивания падает с ростом Еγ.
Рис. 17.3. График зависимости полного сечения эффекта комптона (полной интенсивности) от энергии фотона Еγ; стрелка указывает энергию, при которой начинается рождение электрон-позитронных пар
Применение: в гамма-спектрометрах и др. [3].
Эффект образования пар. При взаимодействии с атомами ядра кванты рентгеновского и гамма излучения достаточно высокой энергии (не менее 1,02 МэВ) вызывают одновременное появление электронов и позитронов. Процесс образования электронно-позитронных пар происходит в поле атомного ядра или поле электрона. Позитрон существует лишь очень короткий промежуток времени; вслед за образованием пары наблюдается явление аннигиляции – исчезновение позитрона и какого либо электрона среды, сопровождаемое излучением двух квантов с энергией 0,51 МэВ.
Do'stlaringiz bilan baham: |