Лекции по дисциплине «эконометрика» (заочное отделение) Тема Основные понятия, предмет, методы и задачи эконометрики Определение эконометрики



Download 228,61 Kb.
bet6/21
Sana15.06.2022
Hajmi228,61 Kb.
#675673
TuriЛекции
1   2   3   4   5   6   7   8   9   ...   21
Bog'liq
ЛЕКЦИИ ПО ДИСЦИПЛИНЕ

1. Понятие регрессии
Регрессионный анализ занимает центральное место во всем математико-статистическом инструментарии эконометрики.
Регрессия – функциональная зависимость между объясняющими переменными и средним значением зависимой переменной, которая строится с целью прогнозирования этого среднего значения при фиксированных значениях объясняющих переменных.
Регрессионное уравнение представляет собой зависимость вида:
.
2. Зависимая переменная
Переменная Y называется зависимой, она характеризует результат или эффек­тивность функционирования анализируемой экономической системы. Ее значения формируются в процессе функционирования этой си­стемы под воздействием ряда других переменных и факторов, часть из которых поддается регистрации и, в определенной степени, управлению и планированию.
В регрессионном анализе результирующая переменная выступает в роли функции, значения которой определяются значениями независимых переменных с некоторой случайной погрешностью, выступающих в роли аргументов. Поэтому по природе своей результирующая переменная Y всегда стохастична (слу­чайна).
Пример:
Изучается зависимость Y – объема продаж холодильников от X1 цены реализации, X2 объема вложений, направленных на улучшение потребительских свойств продукции (энергосбережение, дизайн, дополнительные функции) и X3 вложений в сервисное обслуживание покупателей (открытие и оборудование сервис-центров, организация бесплатной доставки, затраты на гарантийное обслуживание).
В данном случае Y – является результатом функционирования экономической системы производства и сбыта продукции. Y не поддается детерминированному планированию и управлению, поскольку частично определяется внешними факторами: уровнем спроса и наличием конкуренции. По этой же причине, а также в связи с возможностью возникновения ошибок Y является случайной.
3. Независимые переменные
Переменные X=(x1,…,xn) называются независимыми (объясняющими, регрессорами). Они поддаются регистрации, описывают условия функционирования изучаемой реальной экономической систе­мы и в существенной мере определяют процесс формирования значений результирующих переменных. Как правило, часть из них поддается хотя бы частичному регулированию и управлению.
В регрессионном анализе они играют роль аргументов той функции, в качестве которой рассматривается анализируемый результирующий показатель Y. Объясняющие переменные могут быть как случайными, так и неслучайными.
Пример:
В современных западных теориях менеджмента и маркетинга определяется модель рассматриваемой системы, в которой в качестве основных ее элементов, влияющих на объем сбыта продукции выделяются цена, качество, сервис. При этом одновременно поддаются управлению только два любых фактора из трех.

Download 228,61 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   21




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish