1.2. Особенности свойств полимеров
Особенности строения полимеров оказывают большое влияние на их физико-механические и химические свойства. Вследствие высокой молекулярной массы они неспособны переходить в газообразное состояние, при нагреве образовывать низковязкие жидкости, а термостабильные даже не размягчаются. С повышением молекулярной массы уменьшается растворимость полимера.
Полидисперсность, присущая полимерам, приводит к значительному разбросу показателей при определении физико-механических свойств полимерных материалов. Механические свойства полимеров (упругие, прочностные) зависят от их структуры, физического состояния, температуры и т. д.
Полимеры могут находиться в трех физических состояниях: стеклообразном (аморфном или кристаллическом), высокоэластичном и вязкотекучем (жидком).
Стеклообразное состояние (аморфное, кристаллическое) - твердое состояние, имеет фиксированное расположение макромолекул. Атомы звеньев молекул находятся только в колебательном движении у положения равновесия, движение звеньев и перемещение молекул не происходит. Переход полимера в подобное состояние происходит при определенной температуре Тс, называемой температурой стеклования. Температура стеклования (Тс) определяет теплостойкость и морозоустойчивость полимера. В стеклообразном состоянии находятся полимеры с пространственной сетчатой структурой.
Высокоэластичное состояние имеет место при температуре выше температуры стеклования Тс. Высокоэластичное состояние характеризуется подвижностью звеньев или групп звеньев в цепи макромолекул при отсутствии перемещения цепи в целом, даже при небольших нагрузках. Макромолекулы способны только изгибаться.
С увеличением температуры полимер переходит в вязкотекучее, подобное жидкому, состояние, но отличается от него повышенной вязкостью. Энергия теплового движения макромолекул превышает силы межмолекулярного взаимодействия, и макромолекулы свободно перемещаются под действием даже небольших усилий.
Полимеры с пространственной структурой находятся только в стеклообразном состоянии. Редкосетчатая структура позволяет получать полимеры в стеклообразном и высокоэластическом состояниях.
Различные физические состояния полимера обнаруживаются при изменении его деформации с температурой. Графическая зависимость деформации, развивающейся за определенное время при заданном напряжении, от температуры называется термомеханической кривой (рис. 4). На кривых имеются три участка, соответствующие трем физическим состояниям. Средние температуры переходных областей называются температурами перехода. Для линейного некристаллизирующегося полимера (кривая 1) область I – область упругих деформаций (степень деформации 2–5%), связанная с изменением расстояния между частицами вещества. При температуре ниже tхр полимер становится хрупким. Разрушение происходит в результате разрыва химических связей в макромолекуле. В области II небольшие напряжения вызывают перемещение отдельных сегментов макромолекул и их ориентацию в направлении действующей силы. После снятия нагрузки молекулы в результате действия межмолекулярных сил принимают первоначальную равновесную форму. Высокоэластическое состояние характеризуется значительными обратимыми деформациями (сотни процентов). Около точки tт кроме упругой и высокоэластической деформации возникает и пластическая.
Кристаллические полимеры ниже температуры плавления – кристаллизации tk – являются твердыми, но имеют различную жесткость (см. рис. 4, кривая 2) вследствие наличия аморфной части, которая может находиться в различных состояниях. При tk кристаллическая часть плавится и термомеханическая кривая почти скачкообразно достигает участка кривой 1, соответствующего высокоэластической деформации, как у некристаллического полимера.
Рис. 4. Термомеханические кривые некристаллического линейного (1), кристаллического (2) и редкосетчатого (3) полимеров (tc, tk, tт, tx – температуры стеклования, кристаллизации, начала вязкого течения и начала химического разложения соответственно), I–III – участки стеклообразного, высокоэластического и вязкотекучего состояний
Редкосетчатые полимеры (типа резин) имеют термомеханическую кривую типа 3. Узлы сетки препятствуют относительному перемещению полимерных цепей. В связи с этим при повышении температуры вязкого течения не наступает, расширяется высокоэластическая область и ее верхней границей становится температура химического разложения полимера tx.
Температурные переходы (tC и tT) являются одними из основных характеристик полимеров.
Зависимость напряжения от деформации для линейных и сетчатых полимеров различна. Линейные полимеры в стеклообразном состоянии обладают некоторой подвижностью сегментов, поэтому полимеры не так хрупки, как неорганические вещества.
При действии больших напряжений в стеклообразных полимерах развиваются значительные деформации, которые по своей природе близки к высокоэластическим. Эти деформации были названы А. П. Александровым вынужденно-эластическими, а само явление – вынужденной эластичностью. Вынужденно-эластические деформации проявляются в интервале температур tC–tХР, а при нагреве выше tC они обратимы (рис. 5, а). Максимум на кривой называется пределом вынужденной эластичности. У полимеров с плотной сетчатой структурой под действием нагрузки возникает упругая и высокоэластическая деформация, пластическая деформация обычно отсутствует. По сравнению с линейными полимерами упругие деформации составляют относительно большую часть, высокоэластических деформаций гораздо меньше. Природа высокоэластической деформации, как и в линейных полимерах, состоит в обратимом изменении пространственной формы полимерной молекулы, но максимальная деформация при растяжении обычно не превышает 5–15%.
Рис. 5. Диаграммы растяжения:
Do'stlaringiz bilan baham: |