Виконання роботи:
Паралелепіпед:
№
|
m, г
|
l, мм
|
Δl, мм
|
h, мм
|
Δh, мм
|
a, мм
|
Δa, мм
|
Δm.г
|
1
|
16.12
|
59.5
|
0.3
|
42.5
|
0.14
|
10
|
0.008
|
0
|
2
|
16.11
|
59.7
|
0.1
|
42.3
|
0.06
|
10.2
|
0.012
|
0.002
|
3
|
16.11
|
59.9
|
0.1
|
42.3
|
0.06
|
10.01
|
0.02
|
0.002
|
4
|
16.11
|
60.0
|
1.2
|
42.2
|
1.16
|
10
|
0.08
|
0.002
|
5
|
16.11
|
59.9
|
0.1
|
42.5
|
0.14
|
10.01
|
0.002
|
0.002
|
|
16.112
|
59.8
|
|
42.36
|
|
10.01
|
|
| Табл.1.1. Виміри паралелепіпеда
Обробка результатів для паралелепіпеда:
Виконуємо вимірювання.
Знаходимо середнє арифметичне значення.
Визначаємо випадкові абсолютні похибки вимірювання.
Оцінюють середню квадратичну похибку Sx середнього арифметичного:
1)Sm = = = = .0006 = =0.02
2) Sl = = = = = 0.09
3) Sh = = = = = 0.06
4) Sa = = = = = 0.02
Обчислюємо значення довірчої ймовірності.
𝑝 = 0.95
Знаходимо коефіцієнт Стьюдента.
𝑡(5; 0.95) = 2.8
Визначаємо півширину довірчого інтервалу випадкової похибки.
Δmвим = 0.056
Δlвим = 0.252
Δhвим = 0.168
Δaвим = 0.056
Визначаємо межу основної похибки , яку допускає засіб вимірювання.
штангенциркуля = 0,1 мм; вагів = 0,01 г
Визначаємо інструментальну похибку.
Визначаємо похибку відліку. V штангенциркуля = 0,05; Vвагів = 0,005
1)Δmвід(вагів) = 𝑝𝑉 = 0.95 ∗ 0.005 =0.0048
2) Δlвід(штангенциркуля )= 0,95 * 0,05 = 0,0475
11.Знаходимо повну похибку вимірювання.
1)Δm = = = = 0.05
2)Δl = = = = 0.3
3) Δh = = = = 0.28
4)Δa = = = = 0.23
Записуємо остаточний результат у формі при p = 0.95
m = 16.112 ± 0.05
l = 59.8 ± 0,3
h = 42.36 ± 0.28
a = 10.008 ± 0.23
Знаходимо відносну похибку вимірюваної величини:
ln 𝜌 = ln 𝑚 − ln l − ln h − ln a
EP= =
= =
= = =0.07
Δp = Ep × = 0.07 × = 43.89
𝜌=627± 43.89
Циліндр:
-
№
|
m, г
|
Δm,г
|
D, мм
|
ΔD,мм
|
h, мм
|
Δ h, мм
|
1
|
9,53
|
0.006
|
25.3
|
0
|
30.5
|
0
|
2
|
9.53
|
0.006
|
25.2
|
0.1
|
30.5
|
0
|
3
|
9.53
|
0.004
|
25.3
|
0
|
30.5
|
0
|
4
|
9.52
|
0.004
|
25.4
|
0.1
|
30.4
|
0.1
|
5
|
9.52
|
0.004
|
25.3
|
0
|
30.6
|
0.1
|
|
9.524
|
29.9
|
25.3
|
|
30.5
|
|
Табл.1.2. Виміри циліндра
Обробка результатів для циліндра:
Виконуємо вимірювання.
Знаходимо середнє арифметичне значення.
Визначаємо випадкові абсолютні похибки вимірювання.
Оцінюють середню квадратичну похибку Sx середнього арифметичного:
1)Sm = = = = .000006 = 0.002
2) Sd = = = = 0.03
3) Sh = = = 0.03
Обчислюємо значення довірчої ймовірності.
𝑝 = 0.95 Знаходимо коефіцієнт Стьюдента.
𝑡𝑚 = 𝑡(5; 0.95) = 2.8
Визначаємо півширину довірчого інтервалу випадкової похибки.
Δmвим = 0.002×2.8=0.0056
Δdвим = 0.03×2.8=0.084
Δhвим = 0.03×2.8=0.084
Визначаємо межу основної похибки , яку допускає засіб вимірювання.
штангенциркуля = 0,1 мм
вагів = 0,01 г
Визначаємо інструментальну похибку.
Визначаємо похибку відліку.
V штангенциркуля = 0,05; Vвагів = 0,05
1) Δmвід(вагів) = 𝑝𝑉 = 0.95 ∗ 0.005 = 0.0048
2) Δlвід(штангенциркуля )= 0,95 * 0,05 = 0,0475
11.Знаходимо повну похибку вимірювання.
1)Δm = = = = 0.017
2)Δd = = = = = 0.19
3) Δh = = Δd = 0.19
12. Записуємо остаточний результат у формі при p = 0.95
m = 9.524 ± 0.017
d = 25.3± 0.19
h = 30.5 ± 0.19
13. Знаходимо відносну похибку вимірюваної величини:
ln 𝜌 = ln 𝑚 − ln 𝐷 − ln 𝑑 − ln ℎ
EP= =
= =
= = =0.011×620.7=6.82
𝜌=620± 6.82
𝜌1 = = 621.8
𝜌2 626.8
𝜌3 621.1
𝜌4 618.3
𝜌5 621.1
𝜌cереднє =620.7
Труба:
№
|
m, г
|
Δm
|
D
|
ΔD
|
d
|
Δd
|
h
|
Δh
|
1
|
12.06
|
0.02
|
19.8
|
0.06
|
19.1
|
0.26
|
39.5
|
0.06
|
2
|
12.06
|
0.02
|
19.7
|
0.16
|
18.5
|
0.34
|
39.6
|
0.04
|
3
|
12.06
|
0.02
|
19.9
|
0.04
|
18.6
|
0.24
|
39.5
|
0.06
|
4
|
12.05
|
0.08
|
19.9
|
0.04
|
19.1
|
0.26
|
35.5
|
0.06
|
5
|
12.06
|
0.02
|
20.01
|
0.15
|
18.9
|
0.06
|
39.7
|
0.14
|
сер
|
12.058
|
|
19.86
|
27.4
|
18.84
|
|
39.56
|
|
Табл.1.3. Виміри труби Обробка результатів для труби:
Виконуємо вимірювання.
Знаходимо середнє арифметичне значення.
Визначаємо випадкові абсолютні похибки вимірювання.
Оцінюють середню квадратичну похибку Sx середнього арифметичного:
1) Sm = = = = 0.06
2) SD = = = = = 0.05
3) Sd = = = = = 0.1
4) Sh = = = = = 0.1
Обчислюємо значення довірчої ймовірності.
𝑝 = 0.95 Знаходимо коефіцієнт Стьюдента.
𝑡𝑚 = 𝑡(5; 0.95) = 2.8
Визначаємо півширину довірчого інтервалу випадкової похибки.
Δmвим = 0.16
ΔDвим = 0.14
Δdвим = 0.28
Δhвим = 0.11
Визначаємо межу основної похибки , яку допускає засіб вимірювання.
штангенциркуля = 0,1 мм
вагів = 0,01 г
Визначаємо інструментальну похибку.
Визначаємо похибку відліку.
V штангенциркуля = 0,05; Vвагів = 0,005
Δmвід(вагів) = 𝑝𝑉 = 0.95 ∗ 0.005 = 0.0048 2) Δlвід(штангенциркуля )= 0,95 * 0,05 = 0,0475
11.Знаходимо повну похибку вимірювання.
1)Δm = = = = 0.16
4)ΔD= = = = 0.14
5) Δd = = = 0.31
6)Δh = = = = 0.2
Записуємо остаточний результат при p = 0.95
m = 12.058 ± 0.16
D = 19.86 ± 0.14
d = 18.84 ± 0.31
h = 39.56 ± 0.2
Знаходимо відносну похибку вимірюваної величини:
ln 𝜌 = ln 𝑚 − ln 𝐷 − ln 𝑑 − ln ℎ
EP= =
= =
= = =0.0231
Δp = Ep × = 0.0231 × = 227.09
Висновки: на даній лабораторній роботі ми освоїли один із методів визначення густини тіл правильної геометричної форми, а саме її обчислення через масу та об’єм вимірюваного тіла. Навчилися обробляти результати прямих та непрямих вимірювань, визначаючи їх повні та відносні похибки. Повторили формули визначення об’єму та густини однорідного тіла. Працювали з паралелепіпедом, циліндром та трубою, використовували штангенциркуль та електронні ваги.
Do'stlaringiz bilan baham: |