Как байесовский мозг может создавать модели мира?
Но есть и еще один аспект теоремы Байеса, который даже важнее для понимания того, как работает наш мозг. В формуле Байеса два ключевых элемента: p(A|X) и p(X|A) . Величина p(A|X) говорит нам, насколько мы должны изменить наше представление об окружающем мире (A ) после получения новых сведений (X ). Величина p(X|A) говорит нам, каких сведений (X ) мы должны ожидать, исходя из нашего убеждения (A ). Мы можем взглянуть на эти элементы как на средства, позволяющие нашему мозгу делать предсказания и отслеживать ошибки в них. Руководствуясь своими представлениями об окружающем мире, наш мозг может предсказывать характер событий, которые будут отслеживать наши глаза, уши и другие органы чувств: p(X|A) . Что же происходит, когда такое предсказание оказывается ошибочным? Отслеживать ошибки в подобных предсказаниях особенно важно, потому что наш мозг может использовать их для уточнения и улучшения своих представлений об окружающем мире: p(A|X) . После внесения такого уточнения мозг получает новое представление о мире и может снова повторить ту же процедуру, сделав новое предсказание о характере событий, отслеживаемых органами чувств. С каждым повтором этого цикла ошибка в предсказаниях уменьшается. Когда ошибка оказывается достаточно маленькой, наш мозг "знает", что творится вокруг нас. И все это происходит так быстро, что мы даже не осознаём выполнения всей этой сложной процедуры. Нам может казаться, что представления о том, что творится вокруг, даются нам легко, но они требуют неустанного повторения мозгом этих циклов предсказаний и уточнений.
Есть ли в комнате носорог?
Говорить об этих представлениях нашего мозга об окружающем мире можно по-разному. Например, можно говорить о причинах и следствиях. Если я считаю, что в этой комнате сейчас находится носорог, то, возможно, этот носорог и вызывает соответствующие ощущения, получаемые моим мозгом от глаз и ушей. Мозг осуществил поиск возможных причин моих ощущений и пришел к выводу, что наиболее вероятная причина это присутствие в комнате носорога. Можно также говорить о моделях. Мой мозг может предсказать, какие ощущения вызовет носорог, потому что обладает некоторыми априорными представлениями о носорогах. На основе этих априорных знаний у меня в сознании сложился образ носорога. В моем случае это крайне ограниченная модель. Она включает размер животного, его силу, его необычный рог и мало что другое. Но ограниченность моих знаний не имеет значения, потому что модель – это не исчерпывающий список сведений о моделируемом объекте. Модель подобна карте, отображающей реальный мир в уменьшенном масштабе.126 Многие аспекты окружающего мира нельзя найти на карте, но расстояния и направления отражены на картах довольно точно. Пользуясь картой, я могу предсказать, что через 50 ярдов найду поворот налево, и если это карта зоопарка, то, возможно, я даже смогу предсказать, что, скорее всего, увижу там еще одного носорога. Я могу воспользоваться картой, чтобы предсказать, сколько времени займет то или иное путешествие, даже не совершая его. Я могу провести курвиметром по определенному маршруту на карте, моделируя настоящее путешествие, и узнать, какой длины будет этот маршрут. Мой мозг содержит много подобных карт и моделей и пользуется ими, чтобы делать предсказания и моделировать действия. Я вижу, что профессор английского в недоумении. "Но ведь в этой комнате нет носорога", – говорит она.
"Вы что, его не видите? – отвечаю я. – Вам просто не хватает достаточно сильного априорного убеждения".
Do'stlaringiz bilan baham: |