N
NЭ
Рис. 10.17 Структурная схема цифровой АРУ: АЦП - аналого-цифровой преобразователь, ССК - схема сравнения кодов, СУЗ - схема усреднения и запоминания, ЦАП - цифро-аналоговый преобразователь.
Работу цифровой АРУ можно пояснить следующим образом. Сигналы с видеоусилителя поступают на АЦП системы АРУ. Далее цифровой сигнал сравнивается с эталонным значением NЭ и на выходе системы сравнения кодов появляется цифровой сигнал рассогласования подается на ЦАП. На выходе ЦАП формируется аналоговый сигнал управления усилением приемника.
Цифровые системы АРУ имеют ряд преимуществ перед обычными аналоговыми системами:
– независимость длительности установления требуемого усиления от уровня входного сигнала,
– независимость регулировочных характеристик от разброса и конкретных свойств цепи АРУ и регулируемого усилителя (при полностью цифровом выполнении),
– возможность установления требуемого усиления после приема первого импульса сопровождения цели,
– астатизм (независимость от прихода импульса) и сохранения установленного усиления при перерывах в приеме сигналов.
10.3 Переходные процессы при автоматической
регулировки усиления
При проектировании АРУ особое место занимает выбор постоянной времени фильтра в цепи обратной связи. При слишком большой постоянной времени фильтра, АРУ оказывается неработоспособной при быстрых изменениях величины сигнала. Напротив, при слишком малой постоянной времени возможна демодуляция и искажения амплитудно-модулированных сигналов.
При проектировании сглаживающих фильтров необходимо иметь виду, что последствием неправильного выбора его схемы и параметров может явиться неустойчивость коэффициента усиления, и вместо стабилизации напряжения сигнала на выходе могут возникнуть сильные колебания этого напряжения. Поэтому для обеспечения нормальной работы автоматической регулировки усиления следует знать особенности нестационарных процессов в этой системе.
Рассмотрим упрощенную схему регулировки усиления, представленную на рисунке 10.18.
U1 U2
Up=kДkФU2 Дет. АРУ
kДU2
Рис. 10.18 Упрощенная схема регулировки усиления
Коэффициент усиления регулируемого усилителя зависит от регулирующего напряжения . В установившемся режиме напряжение на выходе усилителя определяется выражением:
На основании приведенной схемы регулирующее напряжение, подаваемое на усилитель, определяется как:
где kф - коэффициент передачи фильтра, kд - коэффициент передачи детектора АРУ.
В установившемся режиме обычно kф близко к единице. В первом приближении kд также можно считать постоянным и близок к единице.
Рассмотрим поведение системы АРУ через некоторое время после скачкообразного увеличения напряжения U1 на некоторую величину ΔU1, причем будем полагать, что переходной процесс ко времени наблюдения закончился. В этом случае напряжение U2 также возрастет на величину ΔU2, что вызовет соответствующее увеличение регулирующего напряжения:
Соответственно измениться и коэффициент усиления регулируемого усилителя:
При малых ΔUр последнее выражение можно разложить в ряд Тейлора и ограничиться первыми членами разложения, тогда коэффициент усиления можно представить в следующем виде:
где - положительный коэффициент, характеризующий чувствительность усилителя к изменению управляющего напряжения.
Таким образом, получаем:
Отсюда
Разрешая последнее выражение относительно приращения сигнала на выходе усилителя, получим:
Если , то из последнего получим:
При отсутствии автоматической регулировки мы имели бы:
Следовательно, коэффициент характеризует эффективность автоматической регулировки усиления. Нетрудно видеть, что обычно это сравнительно большой коэффициент, т.к. если напряжение на входе изменяется в сотни и тысячи раз, то напряжение на выходе возрастает в единицы раз. Следовательно, КУ измеряется десятками и сотнями. Это позволяет пренебречь единицей при определении коэффициента КР и считать, что:
При близости kд и kФ к единице коэффициент регулирования можно определять по формуле:
Коэффициент регулирования КР имеет смысл в том случае, если изменение напряжения на выходе ΔU2 приходит к установившемуся значению и теряет смысл, если нестационарные процессы в системе принимают характер длительных или незатухающих колебаний выходного напряжения.
Переходные процессы имеют место во всех звеньях системы автоматического регулирования, однако не везде они играют одинаковую роль.
Появление прироста напряжения на выходе усилителя вызывает прежде всего переходный процесс в цепи нагрузки детектора АРУ и в последующем сглаживающем фильтре. Обычно постоянная времени нагрузки детектора делается сравнительно малой, так что напряжение устанавливается здесь во много раз быстрее, чем на выходе фильтра. Такой выбор постоянной времени целесообразен при диодном детектировании потому, что процессы нарастания и спадания напряжения на нагрузке детектора происходят с неодинаковой скоростью (при заряде конденсатора нагрузки детектора скорость больше, чем при его разряде, т.к. заряд емкости происходит через малое сопротивление открытого диода, а разряд емкости через сопротивление нагрузки, которое намного больше внутреннего сопротивления диода детектора).
Следовательно, если бы переходные процессы в детекторе играли существенную роль, то система автоматического регулирования действовала по разному при положительных и отрицательных приращениях напряжения сигнала. Такие явления в системе регулирования нежелательны и нецелесообразны.
Переходными процессами в колебательных контурах усилителя промежуточной частоты можно пренебречь, так как полоса пропускания УПЧ во много раз больше, чем полоса пропускания фильтра обратной связи.
Поэтому основные переходные процессы связаны с переходными процессами в фильтре.
С учетом изложенного с учетом выражения (10.8) для исследуемой системы операторное дифференциальное уравнение, описывающее поведение сигнала на выходе, можно записать в следующем виде:
где kФ(р) - операторный коэффициент передачи фильтра, а р=+j .
Обычно в качестве фильтров используются следующие резистивно-емкостные структуры.
R1 R1 R2
Uвх C1 Uвх C1 C2 Uвых
а) б) в)
Рис. 10.19 Резистивно-емкостные фильтры. Схема а) соответствует однозвенному RC-фильтру, схема б) -двухзвенному RC-фильтру, схема с) - трехзвенному RC-фильтру.
Комплексный коэффициент передачи однозвенного RC-фильтра имеет вид:
В общем случае коэффициент передачи для n-звенных RC-фильтров можно записать следующим образом:
где аk - коэффициент разложения.
Подставляя (10.15) в (10.13) получим:
или
Решение линейного дифференциального уравнения этого вида имеет показательную форму, причем показателями являются корни знаменателя, т.е. корни уравнения:
В случае применения однозвенного RC-фильтра характеристическое уравнение получает вид:
Откуда получаем корень уравнения:
Следовательно, переходный процесс будет экспоненциальным, апериодическим с постоянной времени:
Решение дифференциального уравнения запишем в следующем виде:
Следует отметить, что постоянная времени системы автоматической регулировки усиления не равна постоянной времени фильтра, меньше ее в КР раз (т.е. меньше ее в сотни раз).
Для схемы с двухзвенным RC-фильтром характеристическое уравнение имеет вид:
При корни характеристического уравнения являются комплексными числами, поэтому переходной процесс будет колебательным. При этом действительные части корней отрицательны и в системе возможны затухающие колебания.
Появление колебаний коэффициента усиления неблагоприятно отражается на качестве воспроизведения сигналов, поэтому их появление нежелательны. Чтобы избежать колебаний в системе АРУ требуется выполнение следующего условия .
В этом случае:
где .
Если необходимо получить высокий коэффициент регулирования КР и вместе с тем избежать колебаний коэффициента усиления, то следует делать постоянную времени одного из звеньев фильтра много больше постоянной времени другого звена.
В случае трехзвенного фильтра характеристическое уравнение получается третьего порядка. При этом возможен режим незатухающих колебаний и нормальная работа радиоприемного устройства становится при этом невозможной.
Поэтому при проектировании автоматической регулировки усиления в радиоприемниках, как правило, избегают применения сглаживающих фильтров более, чем с двумя звеньями.
10.4 Автоматическая подстройка частоты (АПЧ)
10.4.1 Принципы АПЧ. Разновидности системы АПЧ
Частоты колебаний, генерируемые задающим генератором передатчика и гетеродином приемника подвержены влиянию ряда дестабилизирующих факторов (изменение температуры, влажности, давления, питающего напряжения и т.д.).
В однокаскадных передатчиках, когда генератор непосредственно связан с антенной, сильное влияние оказывают условия согласования передатчика и антенно-фидерного тракта. При вращении антенны изменяется коэффициент стоячей волны (КСВ) тракта, а, следовательно, и реактивная нагрузка на генератор, и как следствие, изменяется частота генерируемых колебаний.
Существенное влияние оказывает обтекатель антенны, от которого отражается часть энергии, причем влияние обтекателя проявляется по разному при различных положениях антенны.
Нестабильности частоты передатчика и гетеродина заставляют расширять полосу пропускания приемника для обеспечения устойчивого приема. Расширение полосы пропускания приемника приводит к снижению помехозащищенности приемного устройства и снижает его чувствительность.
В диапазоне дециметровых и сантиметровых волн при использовании магнетронных и клистронных генераторов нормальная работа радиолинии оказывается невозможной, т.к. общие уходы частоты передатчика и гетеродина во много раз превосходят полосу пропускания, согласованную с шириной спектра сигнала. Приведем некоторые оценки. На частоте 10 ГГц температурный коэффициент частоты клистрона и магнетрона имеет значение 0,1 - 0,2 МГц/град. Изменение напряжения на резонаторе отражательного клистрона на 1% вызывает отклонение генерируемой частоты на 1,2-2 МГц, изменение напряжения на отражателе на 1% приводит к изменению частоты на 2,5-3 МГц.
При сканировании антенны РЛС магнетронный передатчик изменяет частоту на +(15 - 20) МГц, причем скорость изменения частоты в режиме сопровождения доходит до 1000 МГц/с (при большой частоте сканирования). Ясно, что в этих условиях приемник практически расстроен настолько, что прием сигналов оказывается практически невозможным. На рисунке 10.20 представлено соотношение требуемой полосы пропускания, определенной с учетом нестабильностей частоты передатчика и приемника, и полосы пропускания приемника определенной исходя из спектра передаваемого сигнала.
требуемая полоса пропускания
мгновенный спектр сигнала
уходы частоты, связанные с нестабильностью частот
гетеродина и передатчика
Рис. 10.20 Соотношение требуемой полосы пропускания, определенной с учетом нестабильностей частоты передатчика и приемника, и полосы пропускания приемника определенной исходя из спектра передаваемого сигнала.
Таким образом, нестабильности частоты передатчика и гетеродина приводят к необходимости расширения полосы пропускания приемника, чтобы обеспечить уверенный прием сигналов.
С целью уменьшения требуемой полосы пропускания используются следующие методы:
– применение стабилизации частоты передатчика и гетеродина, за счет использования высокостабильных кварцевых автогенераторов;
– использование автоматической подстройки частоты гетеродина.
Системы АПЧ можно разбить на 2 класса в зависимости от признака , на основании которого вырабатывается сигнал ошибки:
– частотная система АПЧ (ЧАПЧ), в этой системе указанным выше признаком является отклонение частоты сигнала от переходной частоты частотного детектора;
– фазовая система АПЧ, этим признаком является - отличие фазы колебаний сигнала от фазы опорного колебания.
Особенностью системы ЧАПЧ является наличие статической ошибки регулирования по частоте, т.е. отличие частоты, генерируемой подстраиваемым генератором от частоты, которая точно соответствует эталонному значению. Система ЧАПЧ имеет широкий диапазон начальных расстроек, в котором она способна резко снижать расстройку генератора относительно эталонной частоты или частоты передатчика. Говорят, что ЧАПЧ имеет широкую область втягивания.
Особенностью системы ФАПЧ является нулевая статическая ошибка регулирования по частоте, т.е. равенство частот опорного генератора и сигнала или подстраиваемого генератора и эталонного генератора. Вместе с тем существует статическая ошибка регулирования по фазе. Системы ФАПЧ обычно имеют узкий диапазон начальных расстроек, в котором они осуществляют подстраивающее действие.
Для устранения этого недостатка такие системы обычно используются совместно с ЧАПЧ, причем система ФАПЧ вступает в работу тогда, когда система ЧАПЧ введет частоту в область втягивания системы ФАПЧ.
Системы АПЧ подразделяются на:
– системы абсолютной частоты;
– системы промежуточной частоты.
Системы абсолютной частоты поддерживают частоту колебаний гетеродина на заданной эталонной частоте. Функциональная схема такой системы АПЧ приведена на рисунке 10.21.
Рис. 10.21 Функциональная схема системы абсолютной частоты
В состав системы входят подстраиваемый генератор с управляемым элементом и цепи регулирования, включающая в себя частотный детектор, усилитель постоянного тока и фильтр нижних частот. В этом случае частота генератора стремиться к переходной частоте частотного детектора и не зависит от частоты передатчика.
Системы АПЧ промежуточной частоты поддерживают постоянство промежуточной частоты ( ) при уходе, как частоты передатчика, так и частоты гетеродина приемника.
Различают две разновидности систем АПЧ промежуточной частоты:
– одноканальная АПЧ;
– двухканальная АПЧ.
Наиболее часто используется одноканальная АПЧ промежуточной частоты. Структурная схема одноканальной АПЧ представлена на рисунке 10.22.
Рис. 10.22 Структурная схема одноканальной АПЧ
В петлю обратной связи входят смеситель, УПЧ, частотный детектор, фильтр нижних частот и генератор с управляющим элементом. Система АПЧ поддерживает постоянной разностную частоту между частотой входного сигнала и гетеродина, равной переходной частоте частотного детектора. В данном случае переходная частота равна номинальному значению промежуточной частоты.
Поскольку промежуточная частота ( ) зависит от частоты сигнала и гетеродина, то система АПЧ устраняет нестабильности обеих частот, поддерживая значение промежуточной частоты.
В тех случаях, когда передатчик расположен близко от приемника, применяются двухканальные системы АПЧ. В этом случае подстройку гетеродина производят под частоту излучаемого сигнала (например, в РЛС). При этом систему АПЧ строят так, чтобы канал АПЧ оказывался полностью автономным, не связанным с трактом прохождения сигнала в приемнике. Это повышает помехоустойчивость системы АПЧ за счет исключения возможности "увода" частоты гетеродинных колебаний мощным сигналом с плавно-изменяющейся частотой (что может иметь место при применении одноканальной АПЧ).
Структурная схема двухканальной АПЧ представлена на рисунке 10.23.
Рис. 10.23 Структурная схема двухканальной АПЧ. Принятые обозначения на рисунке : АП - антенный переключатель, УВЧ - усилитель высокой частоты, См - смеситель, УПЧ - усилитель промежуточной частоты, Дет - амплитудный детектор, Упр.э. - управляющий элемент, ФНЧ – фильтр нижних частот, ПРД - пердатчик, УПТ - усилитель постоянного тока, Ат - входной аттенюатор системы АПЧ, См.АПЧ и УПЧАПЧ - смеситель и усилитель промежуточной частоты системы АПЧ, ЧД частотный детектор.
Колебания сигнала с передатчика подаются на смеситель АПЧ через аттенюатор АТ. Далее следует кольцо автоподстройки, изменяющая частоту гетеродина. Гетеродин применяется как для основного канала, так и для канала АПЧ. Полоса пропускания УПЧ системы АПЧ должна быть достаточной для пропускания большей части спектра импульсного сигнала без существенных искажений. Обычно ее выбирают из условия . Смеситель АПЧ должен работать в режиме обеспечения слабого содержания гармоник промежуточной частоты в спектре выходного сигнала. Это необходимо для того, чтобы система АПЧ не оказалась вовлеченной в слежение за частотой гетеродина по одной из высших гармоник промежуточной частоты.
Поскольку мощность передатчика велика, то на смеситель АПЧ просачивается значительная мощность зондирующего сигнала (0,1-0,2 мВт). Управляемая мощность сигнала должна быть значительно больше этих значений. Обычно берут мощность на входе смесителя АПЧ равной (1 - 2) мВт и исходя из этого рассчитывается затухание аттенюатора Ат.
Для снижения содержания гармоник в спектре выходного колебания смесителя одно из образующих колебаний должно быть много слабее другого. В данном случае слабым является колебание гетеродина (Рг = 0,4 - 0,5 мВт). При этом уровень второй гармоники составляет примерно -20 дБ по сравнению с уровнем первой гармоники и возможность неправильной работы системы АПЧ оказывается маловероятной. Кроме того, желательно применение балансных смесителей в каналах АПЧ, т.к. в них осуществляется сильное подавление четных гармоник выходного колебания.
Т.к. величина сигнала при указанных мощностях сигнала и гетеродина в системе АПЧ составляет обычно (0,2-0,4) вольта, то для получения требуемого сигнала на выходе ЧД на уровне (1-2) вольт требуемое число каскадов УПЧ системы АПЧ составляет 1-3.
4.4.2 Системы АПЧ при импульсных сигналах
По скорости протекания переходных процессов системы АПЧ можно подразделить:
– на инерционные;
– на быстродействующие;
– поисковые.
Эта квалификация применяется в основном при импульсных сигналах, т.к. длительность переходных процессов оценивается относительно длительности импульсного сигнала имп.
В системах БАПЧ (быстродействующей АПЧ) подстройка частоты гетеродина осуществляется за время действия одного импульса сигнала. Следовательно, Время протекания переходного процесса меньше длительности сигнального импульса. В промежутках между импульсами система АПЧ разомкнута и должна сохранять настройку гетеродина, установленную во время действия импульсного сигнала.
Функциональная схема системы БАПЧ представлена на рисунке 10.24.
Рис. 10.24 Функциональная схема системы БАПЧ
Нагрузочная цепь на выходе частотного детектора имеет малую постоянную времени и при воздействии на его входе радиоимпульсов ЧД вырабатывает видеоимпульсы, амплитуда которых пропорциональна разности частоты заполнения и переходной частоты ЧД, а полярность соответствует знаку этой разности. Эти видеоимпульсы усиливаются видеоусилителем и подаются на фиксирующую цепь (ФЦ). Последняя вырабатывает постоянное напряжение и поддерживает (фиксирует) его до прихода следующего импульса. Далее это напряжение через усилитель У подается на управляющий элемент гетеродина.
В инерционных системах АПЧ каждый сигнальный импульс вносит некоторую поправку в настройку гетеродина, приближая ее к исходному номинальному значению. Стационарное значение частоты гетеродина устанавливается в результате действия нескольких сигнальных импульсов, следующих на одной и той же несущей. Инерционность системы определяется постоянной времени фильтра и глубиной регулирования. Инерционная система АПЧ используется не только в импульсных системах.
Степень инерционности системы АПЧ в приемниках АМ-сигналов обусловлена только условиями устойчивости и может быть весьма малой.
В приемниках ЧМ-сигналов допустимое быстродействие системы АПЧ ограничено требованиями отсутствия демодуляции сигнала. Системы АПЧ в этих случаях должна устранять медленные паразитные изменения промежуточной частоты, но не должны отслеживать изменения, происходящие в соответствии с полезной частотной модуляцией. В этом отношении требования к системе АПЧ в приемниках ЧМ-сигналов аналогичны требованиям к системам АРУ в приемниках АМ-сигналов.
Каждая система АПЧ обладает ограниченной областью начальных расстроек, генерируемого гетеродином, частоты, от номинального значения, в пределах которой она резко снижает ошибку настройки.
При выходе начальной расстройки за пределы этой области система АПЧ перестает работать. Такие условия работы достаточно характерны, например, для РЛС сантиметрового диапазона волн с магнетронными передатчиками и клистронными гетеродинами. В этих случаях применяют поисковые системы АПЧ. Структурная схема поисковой АПЧ приведена на рисунке 10.25.
Рис. 10.25 Структурная схема поисковой АПЧ
Здесь ГП - генератор пилообразного напряжения, который при отсутствии внешнего воздействия генерирует пилообразное напряжение, перестраивающее частоту гетеродин в Г в максимально возможных пределах. Это позволяет найти такое значение частоты гетеродина, при котором появляется сигнал на выходе УПЧ. С приближением промежуточной частоты к переходной частоте ЧД амплитуда видеоимпульсов на его выходе сначала увеличивается, затем уменьшается и далее изменяется полярность импульсов. После этого начинается новый рост амплитуды. Когда амплитуда сигнала на выходе ЧД достигает определенного значения, фиксирующая цепь ФЦ вырабатывает постоянное напряжение, срывающего автоколебания генератора поиска и переводящего его в режим усиления постоянного напряжения.
Таким образом, прекращается поиск по частоте и осуществляется захват найденного значения частоты гетеродина, обеспечивающего близость промежуточной частоты к номинальному.
Эпюры напряжения, поясняющие работу поисковой системы АПЧ, можно представить следующим образом (см. рисунок 10.26).
Do'stlaringiz bilan baham: |