mantiqiy inkor (inversiya, EMAS amali), mos o‘zgaruvchi ustiga «-» belgi qo‘yish bilan amalga oshiriladi;
mantiqiy qo‘shish (dizyunksiya, YOKI amali), «+» belgi qo‘yish bilan amalga oshiriladi;
- mantiqiy ko’paytirish (konyunksiya, HAM amali), «•» belgi qo‘yish bilan amalga oshiriladi.
Ifodalar ekvivalentligini ifodalash uchun «=» belgisi qo‘yiladi.
Mantiqiy funksiyalar va amallar turli ifodalanish shakllariga ega bo‘lishlari mumkin: algebraik, jadval, so‘z bilan va shartli grafik (sxemalarda). Mantiqiy funksiyalarni berish uchun mumkin bo‘lgan argumentlar majmuidan talab qilinayotgan mantiqiy funksiya qiymatini berish yetarli. Funksiya qiymatlarini ifodalovchi jadval haqiqiylik jadvali deb ataladi.
2.1, 2.2 va 2.3-jadvallarda ikkita o‘zgaruvchi x1,x2 uchun mantiqiy amallarning algebraik va jadval ifodasi keltirilgan.
2.4-jadval
Assotsiativlik qonunlaridan foydalanib, ko‘p o‘zgaruvchi (n>2) ixtiyoriy mantiqiy funksiyasini ikkita o‘zgaruvchi funksiyalar kombinatsiyasi ko‘rinishida ifodalash mumkin. 22 =16 ikkita o‘zgaruvchi funksiyalarining to‘liq majmui 2.5-jadvalda k eltirilgan. Funksiyalarning har biri x1 x2 o‘zgaruvchilar ustidan amalga oshirish mumkin bo‘lgan 16 ta mantiqiy amal kombinatsiyadan birini bildiradi va ular o‘z nomi va shartli belgisiga ega.
Masalan, «Istisnoli YOKI» amalini bajarishda x1 ≠ x2 bo‘lgandagi y6 =1; x1= x2 bo‘lgandagi y6=0 ikkita o‘zgaruvchi uchun tengsizlik signali paydo bo‘ladi. «Teng ma’nolik» (ekvivalentlik) amalini bajarishda x1=x2 bo‘lgandagi y9=1; x1 ≠ x2 bo‘lgandagi y9 = 0 ikkita o‘zgaruvchi uchun tenglik signali paydo bo‘ladi. 2.5-jadvalning so‘nggi ustunida taqiq, implikatsiya (inglizcha, chiqarib olish) kabi murakkab funksiyalarni bajarish uchun u yoki bu amalni bajaruvchi mantiqiy elementlar nomlari keltirilgan.
«Istisnoli YOKI», Pirs va Sheffer elementlari kabi yangi funksiyalar konyunksiya, dizyunksiya va inversiya amallari orqali ifodalangani e’tiborga loyiq. Bir funksiya argumentlarini boshqa funksiya argumentlari bilan almashtirish amali superpoztsiya deb atala- di. Superpozitsiyani bir necha marta kodlash ikkita o‘zgaruvchi funksiyasi asosidagi ixtiyoriy sondagi argumentlar uchun (ya’ni, turli murak- kablikdagi) funksiyalar olish imkonini beradi. Mazkur funksiyalar super- pozitsiyasi yordamida ifodalash mumkin boTgan ixtiyoriy ikkilik funk- siya majmui, funksional to(liq majmua (FTM) deb ataladi. FTM kon- yunksiya va inversiya, dizyunksiya va inversiya, taqiq va bir konstantasi, taqiq va inversiya, tengma’nolik emas va implikatsiya, hamda ikkita yakka funksiyalar - Pirs va Sheffer elementini hosil qiladi. Konyunksiya, dizyuntsiya va inversiya funksiyalari majmui asosiy funksional to (liq majmua (AFTM) nomini olgan.
Do'stlaringiz bilan baham: |