Kombinatorika predmeti nima?


Hajmiylik aksiomasi nimadan iborat?



Download 457,57 Kb.
bet6/23
Sana20.12.2022
Hajmi457,57 Kb.
#891829
1   2   3   4   5   6   7   8   9   ...   23
Bog'liq
Kombinatorika predmeti nima

Hajmiylik aksiomasi nimadan iborat?

Hajmiylik aksiomasi. Ikkita va to‘plamlar faqat va faqat aynan bir xil elementlardan iborat bo‘lsagina teng bo‘ladi
Hajmiylik aksiomasidan, to‘plamlar bo‘yicha ko‘plab tasdiqlarni isbotlashda foydalanamiz. Hajmiylik aksiomasini boshqacha ifodalash ham mumkin. to‘plamning har bir elementi to‘plamda ham mavjud va, aksincha, to‘plamning har bir elementi to‘plamda ham mavjud bo‘lsa, u holda va to‘plamlar tengdir. va to‘plamlarning tengligini yoki ko‘rinishda ifodalaymiz. Aslida, bo‘lsa, u holda va to‘plamlar aynan bitta to‘plamning har xil belgilanishidir. Masalan, o‘nlik sanoq tizimidagi yozuvining oxirgi raqami 1, 3, 5, 7 yoki 9 raqamlaridan biri bo‘lgan natural sonlar to‘plamini bilan, birni qo‘shganda ikkiga qoldiqsiz bo‘linadigan natural sonlar to‘plamini esa bilan belgilasak, u holda bo‘ladi. yozuv to‘plamlardagi elementlarning qaysi tartibda joylashishiga bog‘liq emas. Albatta, to‘plamdagi elementlarni qaysi tartibda qo‘yish masalasi ham dolzarbdir.
va to‘plamlar teng bo‘lmasa, u holda bu holat yoki ko‘rinishda ifodalanadi.
To‘plamlar nazariyasida quvvat eng muhim tushunchalardan biri bo‘lib, u to‘plamlarni taqqoslashda katta ahamiyatga egadir. To‘plamning quvvati tushunchasi, uning chekli yoki cheksiz bo‘lishiga qarab ta’riflanadi. Quvvat tushunchasi to‘g‘risida batafsil ma’lumotni to‘plamlar nazariyasiga bag‘ishlangan manbalardan topish mumkin (masalan, [30-33]). Kombinatorika va graflar nazariyasida, asosan, chekli to‘plamlar bilan ish ko‘riladi. Shu sababli, to‘plamning quvvati tushunchasini faqat chekli to‘plamlar uchun keltirish bilan chegaralanamiz.

  1. Bo‘sh to‘plam aksiomasi qanday ifodalanadi?

Bo‘sh to‘plam aksiomasi. Birorta ham elementga ega bo‘lmagan to‘plam, ya’ni bo‘sh to‘plam, mavjud. Bo‘sh to‘plam uchun belgisi qo‘llaniladi


  1. Download 457,57 Kb.

    Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   23




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish