Кўфн дан тестлар



Download 219,5 Kb.
Sana02.04.2022
Hajmi219,5 Kb.
#524123
Bog'liq
KO\'FN dan test


KO‘FN dan testlar

##1# f(z) – golomorf funksiya bo‘lsin. U holda = ? ni hisoblang.##


A) Imf(z)
B) Ref '(z)
+C) f '(z)
D) - Ref '(z)
E) Imf '(z)
##2## f(z) – golomorf funksiya bo‘lsin. U holda =? ni hisoblang.##
A) Imf '(z)
B) i·Ref '(z)
+C) - ·f '(z)
D) Ref '(z)
E) –i·Imf '(z)

##3# Ref(z) = x3 +6x2y – 3xy2 – 2y3, f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##


A) 2iz3
+B) (1 –2i)z3
C) 3(z –1)3
D) 2z3 – 3
E) z3 + 2z2

##4# Ref(z) = ex(x·cosy – y·siny), f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##


A) e z ·sinz
+B) z·e z
C) z ·cosz· e z
D) z + e z
E) e z(z –1)

##5# Ref(z) = x·cosx·chy + y·sinx·shy, f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##


+A) z·cosz
B) z·sinz
C) z·chz
D) z·shz
E) chz·cosz

##6# Imf(z) = y·cosy·chx + x·siny·shx, f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##


A) i·z·shz
B) i·z·cosz
C) sinz·chz
D) cosz·shz
+E) z·chz

##7# z = (1+i )8·(1 - i ) – 6 uchun |z| va arg z mos ravishda…….. va …… ga teng.##


A)
B)
C)
+D)
E)

##8# Parallelogrammning uchta uchlari berilgan: z1 = 1+i, z2 = 2 +1,5·i, z3 = 3+3·i. z2 uchiga qarama-qarshi yotuvchi to‘rtinchi z4 uchini toping.##


+A) z4=2+2,5·i
B) z4=1,5+2·i
C) z4=1,5+2,5·i
D) z4=2+2·i
E) z4=2,5+ i

##9# cos(2+i ) sonining haqiqiy qismini toping.##


A) cos2· sin1,
+B) ch1·cos2,
C) sin2·sin1
D) sh1·cos2
E) sh1·sin2.
##10# ctg( - i·ln2) sonining mavhum qismini toping.##
A) 5/7
B) 0
C) –1
D) 12/15
+E)15/17
##11# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w| < 1 birlik doiraga f( i ) = 0, arg f '( i ) = - shartlari bilan konform akslantirsin. U holda f( 2i )=? ni toping.##
A) i /2
+B) 1/3
C) i /4
D) 1/5
E) i /6

##12# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w| < 1 birlik doiraga f(2i ) = 0, arg f '( 2i ) = 0 shartlari bilan konform akslantirsin. U holda f( 3i )=? ni toping.##


+A) i /5


B) – i /4
C) 1 /3
D) – 2/3
E) 3i /4
##13# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w| < 1 birlik doiraga f(1+ i ) = 0, arg f '( 1+i ) = - shartlari bilan konform akslantirsin. U holda f( 2i )=? ni toping.##
A) (i+1)/3
B) (i-1)/(3+i)
C) i/(5-i)
D) –i/(5+i)
+E) (i-1)/(3i-1)

##14# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w-1| < 1 doiraga f( i ) = 1, arg f '( i ) = 0 shartlari bilan konform akslantirsin. U holda f( 2i )=? ni toping.##


A) (i-3)/3
B) (3-i) /3
+C) (i+3)/3
D) –(i+3)/3
E) 3/2
##15# w = f(z) funksiya |z| < 2 doiraga Rew > 0 o‘ng yarim tekislikni f( 0 ) = 1, arg f '( 0 ) = shartlari bilan konform akslantirsin. U holda f(i )=? ni toping.##
+A) 1/3
B) 1/4
C) 1/5
D) 1/6
E) 1/2
##16# w = f(z) funksiya |z| < 1 doirani |w| < 1 birlik doiraga f( 1/2 ) = 0, arg f ' (1/2 ) = 0 shartlari bilan konform akslantirsin. U holda f(0)=?
A) 1/2
B) i /2
C) –i /2
+D) –1/2
E) 1/3

##17# w = f(z) funksiya |z| < 1 doirani |w| < 1 birlik doiraga f( 1/2 ) = 0, arg f ' (1/2 ) =/2 shartlari bilan konform akslantirsin. U holda f(0)=? ni toping.##


A) –1/2
+B) 1/2
C) i /2
D) 1/4
E) –1/4.
##18# w = f(z) funksiya |z| < 1 doirani |w| < 1 birlik doiraga f( 0 ) = 0, arg f ' (0) =-/2 shartlari bilan konform akslantirsin. U holda f (1/2)=? ni toping.##
+A) –i /2
B) i /2
C) 1/2
D) -1/3
E) i /3

##19# w = f(z) funksiya |z| < 1 doirani | w-1| < 1 birlik doiraga f(0) = 1/2, f (1 ) = 0 shartlari bilan konform akslantirsin. U holda f( 1/2 )=? ni toping.##


A) 1/3
B) 1/4
+C) 1/5
D) 1/6
E) 1/7

##20# w = f(z) funksiya |z-2| < 1 doirani |w-2i| < 2 birlik doiraga f( 2 ) = i , arg f ' (2 ) = 0 shartlari bilan konform akslantirsin. U holda f( 3/2) =? ni toping.##


A) i
B) (5i+1)/2
C) (-13+16 i )/15
+D) (-12+14 i )/17
E) 3i

##21# 1/(1-z)2 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 1/2
B) –1/2
+C) 3
D) –3
E) 1/6

##22# 2/(1+z)3 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


+A) 12
B) 6
C) 3
D) 1/3
E) 1/12

##23# z(z+2)/(2-z)3 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 2
B) –2
C) –1/2
+D) 1/2
E) 1/3

##24# 1/(z2 +9) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 1/9
B) –1/25
C) 1/49
+D) -1/81
E) 1/121

##25# 1/(1+z2)2 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 1
+B) –2
C) 3
D) –4
E) 5

##26# (z2+4z4+z6)/(1-z2)4 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 5
B) –4
C) 3
D) –2
+E) 1

##27# z/(1-z)3 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 0
B) 1/2
C) 1/3
+D) 3
E) 2

##28# 1/(z+1)(z-2) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.## +A) –3/8


B) 3/4
C) 3/2
D) –3/2
E) 3/8

##29# (2z-5)/(z2-5z+6) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 25/127
B) 12/35
+C) –35/216
D) –13/41
E) 3/7

##30# 1/(z2-1)2(z2+4) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 6/17
+B) 7/16
C) 5/18
D) 9/14
E) 8/15

##31# 1/sinz funksiyaning z = 2 nuqtadagi qoldig‘ini toping.##


A) 
+B) 1/
C) 2
D) 1/2
E) -
##32# ctgz funksiyaning z = 3 nuqtadagi qoldig‘ini toping.##
+A) 1/
B) 
C) 3
D) 1/3
E) -

##33# thz funksiyaning z = i/2 nuqtadagi qoldig‘ini toping.##


A) 
B) -
C) 3
D) 2
+E) 1
##34# cth2z funksiyaning z = 0 nuqtadagi qoldig‘ini toping.##
A) 
B) -
+C) 0
D) –1
E) 1

##35# cosz/(z-1)2 funksiyaning z = 1 nuqtadagi qoldig‘ini toping.##


A) cos1
B) –cos1
C) sin1
+D) –sin1
E) 0

##36# 1/(e z +1) funksiyaning z = i nuqtadagi qoldig‘ini toping.##


A) -
B) 
C) 0
D) 1
+E) –1

##37# sinz/(z-1)3 funksiyaning z =1 nuqtadagi qoldig‘ini toping.##


A) 2
B) 1
+C) 0
D) –1
E) -2

##38# 1/sinz2 funksiyaning z = 0 nuqtadagi qoldig‘ini toping.##


+A) 0
B) 1/2
C) 1
D) –1
E) 1/3

##39# cos[(z+2)/2z] funksiyaning z =  nuqtadagi qoldig‘ini toping.##


+A) ,
B) -,
C) 0,
D) 1/,
E) –1/.

##40# z cos2(/z) funksiyaning z = nuqtadagi qoldig‘ini toping.##


A) 3
+B) 2
C) 
D) 1
E) 0

##41# Integralni hisoblang: .##


A) –2
B) –1
+C) 0
D) 1
E) 2
##42# Integralni hisoblang: .##
A) i
+B) 2i
C) 3i
D) -i
E) 0
##43# Integralni hisoblang: .##
A) i
B) -i/2
C)i/3
+D)-2i/3
E) 0
##44# Integralni hisoblang: .##
A) 2i cos1
B) 4i sin1
C) 2i(sin1+cos1)
D) 4i (sin1-cos1)
+E) 4i (cos1-sin1)
##45# Integralni hisoblang: .##
A) 2i sin1
+B) i (cos1+2sin1)
C) 4i (sin1 +2cos1)
D) 4i cos1
E) i (2sin1-cos1)
##46# Integralni hisoblang: .##
+A) -2i /9
B) 0
C) i /3
D) 1
E) i
##47# Integralni hisoblang: .##
A) i /3
B) -i /81
+C) -i /121
D) 0
E) 2i / 169
##48# Integralni hisoblang: .##
A) 0
B) i
C) –i
+D) i
E) -i
##49# Integralni hisoblang: .##
+A) 0
B) –i
C) 
D)-
E) 1
##50# Integralni hisoblang: .##
A) 2i
B) -2i
C)1
D)-1
+E) 0

##51# (z) – golomorf funksiya bo‘lsin. U holda =? ni toping.##


A) Imf(z)
B) Ref '(z)
+C) f '(z)
D) - Ref '(z)
E) Imf '(z).
##52# – golomorf funksiya bo‘lsin. U holda =? ni toping.##
A) Imf '(z)
B) i·Ref '(z)
+C) - ·f '(z)
D) Ref '(z)
E) –i·Imf '(z)
##53# Ref(z) = x3 +6x2y – 3xy2 – 2y3, f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##
A) 2iz3
+B) (1 –2i)z3
C) 3(z –1)3
D) 2z3 – 3
E) z3 + 2z2

##54# f(z) = ex(x·cosy – y·siny), f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##


A) e z ·sinz
+B) z·e z
C) z ·cosz· e z
D) z + e z
E) e z(z –1)

##55# Ref(z) = x·cosx·chy + y·sinx·shy, f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##


+A) z·cosz
B) z·sinz
C) z·chz
D) z·shz
E) chz·cosz

##56# Imf(z) = y·cosy·chx + x·siny·shx, f(0) = 0 bo‘lsin. U holda f(z) golomorf funksiyani toping.##


A) i·z·shz,
B) i·z·cosz,
C) sinz·chz
D) cosz·shz,
+E) z·chz.

##57# z = (1+i )8·(1 - i ) – 6 uchun |z| va arg z mos ravishda.##


A)
B)
C)
+D)
E)

##58# Parallelogrammning uchta uchlari berilgan: z1 = 1+i, z2 = 2 +1,5·i, z3 = 3+3·i. z2 uchiga qarama-qarshi yotuvchi to‘rtinchi z4 uchini toping.##


+A) z4=2+2,5·i
B) z4=1,5+2·i
C) z4=1,5+2,5·i
D) z4=2+2·i
E) z4=2,5+ i
##59# cos(2+i ) sonining haqiqiy qismini toping.##
A) cos2· sin1
+B) ch1·cos2
C) sin2·sin1
D) sh1·cos2
E) sh1·sin2
##60# ctg( - i·ln2) sonining mavhum qismini toping.##
A) 5/7
B) 0
C) –1
D) 12/15
+E)15/17
##61# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w| < 1 birlik doiraga f( i ) = 0, arg f '( i ) = - shartlari bilan konform akslantirsin. U holda f( 2i )=? ni toping.##
A) i /2
+B) 1/3
C) i /4
D) 1/5
E) i /6

##62# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w| < 1 birlik doiraga f(2i ) = 0, arg f '( 2i ) = 0 shartlari bilan konform akslantirsin. U holda f( 3i )=? ni toping.##


+A) i /5
B) – i /4
C) 1 /3
D) – 2/3
E) 3i /4
##63# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w| < 1 birlik doiraga f(1+ i ) = 0, arg f '( 1+i ) = - shartlari bilan konform akslantirsin. U holda f( 2i )=? ni toping.##
A) (i+1)/3
B) (i-1)/(3+i)
C) i/(5-i)
D) –i/(5+i)
+E) (i-1)/(3i-1)

##64# w = f(z) funksiya Imz > 0 yuqori yarim tekislikni |w-1| < 1 doiraga f( i ) = 1, arg f '( i ) = 0 shartlari bilan konform akslantirsin. U holda f( 2i )=? ni toping.##


A) (i-3)/3
B) (3-i) /3
+C) (i+3)/3
D) –(i+3)/3
E) 3/2

##65# w = f(z) funksiya |z| < 2 doiraga Rew > 0 o‘ng yarim tekislikni f( 0 ) = 1, arg f '( 0 ) = shartlari bilan konform akslantirsin. U holda f(i )=? ni toping.##


+A) 1/3
B) 1/4
C) 1/5
D) 1/6
E) 1/2

##66# w = f(z) funksiya |z| < 1 doirani |w| < 1 birlik doiraga f( 1/2 ) = 0, arg f ' (1/2 ) = 0 shartlari bilan konform akslantirsin. U holda f(0)=? ni toping.##


A) 1/2
B) i /2
C) –i /2
+D) –1/2
E) 1/3
##67# w = f(z) funksiya |z| < 1 doirani |w| < 1 birlik doiraga f( 1/2 ) = 0, arg f ' (1/2 ) =/2 shartlari bilan konform akslantirsin. U holda f(0)=? ni toping.##
A) –1/2
+B) 1/2
C) i /2
D) 1/4
E) –1/4

##68# w = f(z) funksiya |z| < 1 doirani |w| < 1 birlik doiraga f( 0 ) = 0, arg f ' (0) =-/2 shartlari bilan konform akslantirsin. U holda f (1/2)=? ni toping.##


+A) –i /2
B) i /2
C) 1/2
D) -1/3
E) i /3

##69# w = f(z) funksiya |z| < 1 doirani | w-1| < 1 birlik doiraga f(0) = 1/2, f (1 ) = 0 shartlari bilan konform akslantirsin. U holda f( 1/2 )=? ni toping.##


A) 1/3
B) 1/4
+C) 1/5
D) 1/6
E) 1/7
##70# w = f(z) funksiya |z-2| < 1 doirani |w-2i| < 2 birlik doiraga f( 2 ) = i , arg f ' (2 ) = 0 shartlari bilan konform akslantirsin. U holda f( 3/2) =? ni toping.##
A) i
B) (5i+1)/2
C) (-13+16 i )/15
+D) (-12+14 i )/17
E) 3i

##71# 1/(1-z)2 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 1/2
B) –1/2
+C) 3
D) –3
E) 1/6

##72# 2/(1+z)3 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


+A) 12
B) 6
C) 3
D) 1/3
E) 1/12

##73# z(z+2)/(2-z)3 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.## A) 2


B) –2
C) –1/2
+D) 1/2
E) 1/3

##74# 1/(z2 +9) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 1/9
B) –1/25
C) 1/49
+D) -1/81
E) 1/121

##75# 1/(1+z2)2 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 1
+B) –2
C) 3
D) –4
E) 5
##76# (z2+4z4+z6)/(1-z2)4 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##
A) 5
B) –4
C) 3
D) –2
+E) 1

##77# z/(1-z)3 funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 0
B) 1/2
C) 1/3
+D) 3
E) 2

##78# 1/(z+1)(z-2) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.## +A) –3/8


B) 3/4
C) 3/2
D) –3/2
E) 3/8

##79# (2z-5)/(z2-5z+6) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 25/127
B) 12/35
+C) –35/216
D) –13/41
E) 3/7

##80# 1/(z2-1)2(z2+4) funksiyasining z = 0 nuqta atrofida Teylor qatoriga yoyilmasidagi с2 koeffitsiyentni toping.##


A) 6/17
+B) 7/16
C) 5/18
D) 9/14
E) 8/15

##81# 1/sinz funksiyaning z = 2 nuqtadagi qoldig‘ini toping.##


A) 
+B) 1/
C) 2
D) 1/2
E) -

##82# ctgz funksiyaning z = 3 nuqtadagi qoldig‘ini toping.##


+A) 1/
B) 
C) 3
D) 1/3
E) -

##83# thz funksiyaning z = i/2 nuqtadagi qoldig‘ini toping.##


A) 
B) -
C) 3
D) 2
+E) 1

##84# th2z funksiyaning z = 0 nuqtadagi qoldig‘ini toping.##


A) 
B) -
+C) 0
D) –1
E) 1

##85# cosz/(z-1)2 funksiyaning z = 1 nuqtadagi qoldig‘ini toping.##


A) cos1
B) –cos1
C) sin1
+D) –sin1
E) 0

##86# 1/(e z +1) funksiyaning z = i nuqtadagi qoldig‘ini toping.##


A) -
B) 
C) 0
D) 1
+E) –1

##87# sinz/(z-1)3 funksiyaning z =1 nuqtadagi qoldig‘ini toping.##


A) 2
B) 1
+C) 0
D) –1
E) -2

##88# 1/sinz2 funksiyaning z = 0 nuqtadagi qoldig‘ini toping.##


+A) 0
B) 1/2
C) 1
D) –1
E) 1/3

##89# cos[(z+2)/2z] funksiyaning z =  nuqtadagi qoldig‘ini toping.##


+A) 
B) -
C) 0
D) 1/
E) –1/

##90# z cos2(/z) funksiyaning z = nuqtadagi qoldig‘ini toping.##


A) 3,
+B) 2,
C) ,
D) 1,
E) 0

##91# Integralni hisoblang: .##


A) –2
B) –1
+C) 0
D) 1
E) 2
##92# Integralni hisoblang: .##
A) i
+B) 2i
C) 3i
D) -i
E) 0
##93# Integralni hisoblang: .##
A) i
B) -i/2
C)i/3
+D)-2i/3
E) 0
##94# Integralni hisoblang: .##
A) 2i cos1
B) 4i sin1
C) 2i(sin1+cos1)
D) 4i (sin1-cos1)
+E) 4i (cos1-sin1)
##95# Integralni hisoblang: .##
A) 2i sin1
+B) i (cos1+2sin1)
C) 4i (sin1 +2cos1)
D) 4i cos1
E) i (2sin1-cos1)
##96# Integralni hisoblang: .##
+A) -2i /9
B) 0
C) i /3
D) 1
E) i
##97# Integralni hisoblang: .##
A) i /3
B) -i /81
+C) -i /121
D) 0
E) 2i / 169
##98# Integralni hisoblang: .##
A) 0
B) i
C) –i
+D) i
E) -i
##99# Integralni hisoblang: .##
+A) 0
B) –i
C) 
D)-
E) 1
##100# Integralni hisoblang: .##
A) 2i
B) -2i
C)1
D)-1
+E) 0

1 - C

21 - C

41 - C

61 - B

81 - B

2 - C

22 - A

42 - B

62 - A

82 - A

3 - B

23 - D

43 - D

63 - E

83 - E

4 - B

24 - D

44 - E

64 - C

84 - C

5 - A

25 - B

45 - B

65 - A

85 - D

6 - E

26 - E

46 - A

66 - D

86 - E

7 - D

27 - D

47 - C

67 - B

87 - C

8 - A

28 - A

48 - D

68 - A

88 - A

9 - B

29 - C

49 - A

69 - C

89 - A

10 - E

30 - B

50 - E

70 - D

90 - B

11 - B

31 - B

51 - C

71 - C

91 - C

12 - A

32 - A

52 - C

72 - A

92 - B

13 - E

33 - E

53 - B

73 - D

93 - D

14 - C

34 - C

54 - B

74 - D

94 - E

15 - A

35 - D

55 - A

75 - B

95 - B

16 - D

36 - E

56 - E

76 - E

96 - A

17 - B

37 - C

57 - D

77 - D

97 - C

18 - A

38 - A

58 - A

78 - A

98 - D

19 - C

39 - A

59 - B

79 - C

99 - A

20 - D

40 - B

60 - E

80 - B

100 - E

8
Download 219,5 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish