J. R. Solvability of a problem for a time fractional m atematika Instituti Byulleteni 2021, Vol. 4, №4, 9-18 b. Bulletin of the Institute of Mathematics 2021, Vol. 4, №4, pp. 9-18 Бюллетень



Download 0,89 Mb.
bet3/4
Sana22.04.2022
Hajmi0,89 Mb.
#571592
TuriБюллетень
1   2   3   4
Bog'liq
2 5407018626257523886

References


  1. Kilbas A. A. , Srivstava H. M. , Trujillo J. J. Theory and Applications of fractional differential equqtions. In North-Holland Mathematics Studies, Vol. 204, Elsevier(North-Holland) Science Publishers, Amsterdam, 2006.

  2. Gu H. , Trujillo J. J. Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math. Comput., 2015, 257, pp.344-354.

  3. Kadirkulov B. J. , Jalilov M. A. , On a nonlocal problem for fourth-order mixed type equation with the Hilfer operator. Bulletin of the Institute of Mathematics, 2020, 1, pp.59-67 (in Russian).

  4. Podlubny I. Fractional Differential Equations. Academic Press, San Diego, 1999.

  5. Samko S . G. , Kilbas A. A. , Marichev O. I. Fractional Integrals and derivatives:Theory and Applications. Gordon and Breach, Amsterdam, 1987, English translate from the Russian.

  6. Alikhanov A. A. A priori estimate for solutions of boundary value problems for fractional-order equations. Differential equations., 2010, 6(5), pp. 660-666.

  7. Abdullaev O. Kh. , Khujakulov J. R. On a problem for the time-fractional diffusion equation on a metric graphs. Uzbek Mathematical Journal., 2017, 4, pp. 3-12.

  8. Berkolaiko G. An elementary introduction to quantum graphs. arXiv: 1603.07356v2 [math-ph] 17 Dec. 2016.

  9. Gnutzmann S. , Keating J. P. , Piotet F. Quantum ergodicity on graphs. arXiv:0808.4110v1 [nlin.CD] 29 Aug. 2008.

  10. Khujakulov J. R. On inverse source problem for time fractional diffusion equation on simple metric graphs. Uzbek Mathematical Journal, 2020, 2, pp.99-108.

  11. Furati K. M. , Kassim M. D. , Tatar N. e-. Existence and uniqueness for a problem involving Hilfer fractional derivative. Computers and Mathematics with Applications, 2012, 64, pp.1616-1626.

  12. Kottos T. ,Smilansky U. Periodic Orbit Theory and Spectral Statistics for Quantum Graphs. Annals of Physics, 1999, 274(1), pp.76-124.

  13. Gnutzmann S. , Smilansky U. , Quantum graphs: Applications to quantum chaos and universal spectral statistics. Advances in Physics, 2006, 55(5-6), pp.527-625.

  14. Khudayberganov G. ,Sobirov Z. ,Eshimbetov M. Unified transform method for the Schrodinger equation on a simple metric graph. Journal of Siberian Federal University. Mathematics and Physics, 2019, 12(4), pp.412-420.

  15. Sobirov Z. A. ,Uecker H. ,Akhmedov M. I. , Exact solutions of the Cauchy problem for the linearized KdV equation on metric star graphs. Uzbek Mathematical Journal, 2015, 3, pp.143-154.

  16. Sobirov Z. A. ,Akhmedov M. I. ,Uecker H. , Cauchy problem for the linearized KdV equation on general metric star graphs. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(2), pp.198-204.

  17. Mugnolo D. ,Noja D. ,Seifert Ch. Airy-type evolution equations on star graphs. Analysis and PDE, 2018, 11(7), pp.1625-1652.

  18. Sobirov Z. A. ,Akhmedov M. I. ,Karpova O. V. ,Jabbarova B. Linearized KdV equation on a metric graph. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(6), pp.757-761.

  19. Seifert Ch. The linearized Korteweg-de-Vries equation on general metric graphs. The Diversity and Beauty of Applied Operator Theory, 2018, 268, pp.449-458.

  20. Rakhimov K. , Sobirov Z. , Jabborov N. The Time-fractional Airy Equation on the Metric Graph. Journal of Siberian Federal University. Mathematics and Physics , 2021, 14(3), pp.376-388.

  21. Mehandiratta V. , Mehra M. A difference scheme for the time-fractional diffusion equation on a metric star graph. Applied Numerical Mathematics, 2020, 158, pp.152-163.

  22. Hilfer R. , (Ed.) Applications of Fractional Calculus in Physics. World Scientific,Singapore , 2000.

  23. Hilfer R. ,Luchko Y. ,Tomovski Z. Operational method for solution of the fractional differential equations with the generalized Riemann-Liouville fractional derivatives. Fractional Calculus and Applied Analysis, 2009, 12, pp.299-318.

  24. Maindardi F. Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, 2010.

  25. Srivastava H. M. , Tomovski Z. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Applied Mathematics and Computation, 2009, 211, pp.198-210.

  26. Dzherbashian M. M. Integral transforms and representations of functions in the complex domain. Moscow, 1966 (in Russian).

  27. Rakhimov K. U. The Cauchy problem for the Airy equation with a fractional time derivative on the star-shaped graph . Bulletin of the Institute of Mathematics , 2019, 5, pp.40-49. (in Russian)

Received: 14/07/2021 Accepted: 30/09/2021

Download 0,89 Mb.

Do'stlaringiz bilan baham:
1   2   3   4




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish