Iv javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti zust da sabunebismetyvelo mecnierebaTa fakulteti



Download 116 Kb.
Sana07.02.2017
Hajmi116 Kb.
#2028


iv. javaxiSvilis saxelobis Tbilisis saxelmwifo universiteti

zust da sabunebismetyvelo mecnierebaTa fakulteti
(diferencialuri gantolebebis mimarTuleba, sabakalavro programa:

maTematika, MINOR)
s i l a b u s i


saswavlo kursis dasaxeleba

diferencialuri gantolebebi da maTematiku­ri fizi­ka

saswavlo kursis kodi




saswavlo kursis statusi

kursi gankuTvnilia maTematikiT (minor) dainteresebuli zust da sabu­ne­bismetyvelo mecnierebaTa fakultetis me-2 an ufro maRali kursis ba­ka­lav­riatis studentebisTvis, rogorc sa­val­de­bulo.

saswavlo kursis kreditebi

6 krediti. sakontaqto _ 60 sT (leqcia 30 sT, praqtikuli 30 sT, laboratoriuli samuSaoebi (cxrils gareT)); damoukidebeli muSaobis­Tvis _ 90 sT.

leqtori

prof. giorgi jaiani, iv. javaxiSvilis saxelobis Tbilisis sa­xel­mwi­fo universiteti, zust da sabunebismetyvelo mecni­ere­ba­Ta fa­kul­teti, i. vekuas saxelobis gamoyenebiTi maTematikis in­stituti, tel.:P308098 da 303040 (samsaxuri), 290470 (bina), jaiani@viam.sci.tsu.ge

saswavlo kursis mniSvneloba da mizani

Tanamedrove moTxovnebis pirobebSi farTo pro­fi­liT maTe­ma­ti­ku­ri ganaTlebis mqone specialistebis momza­de­bis umTavres mi­zans warmoadgens maTTvis myari maTematikuri cod­nis micema bunebriv (fizikur) da socialur-ekonomikur pro­cesebTan kav­SirSi. aRniSnuli procesebi, umTavresad, aRi­we­reba Cveulebrivi diferencia­luri gantolebebiT da maTematikuri fi­zikis ganto­lebebiT. aqedan gamomdinare, maTe­ma­tikosis CamoyalibebaSi Rer­Zuli mniSvneloba eniWeba Cveulebrivi diferencia­luri ganto­le­bebisa da maTemati­ku­ri fizikis gantolebebis safuZvlian Ses­­wavlas. kerZod, kursis mizania, studentebs misces sabazo codna Cveu­lebriv diferencia­lur gantolebebSi da gamou­muSa­vos maT ele­men­taruli gantolebebis gamokvlevisa da amoxsnis unar-Cveve­bi; isi­ni unda icnobdnen maTema­ti­ku­ri fizikis Ziri­Tad gantole­bebs, unda icodnen maTi momcveli zogadi saxis ker­Zo­warmoebu­li­ani diferencialuri gantolebebis klasifi­ka­cia, amonaxsnebis Tvi­se­bebi, Sesabamisi sawyisi da sasazRvro amo­canebis koreqtu­lad dasma da maTi gamokvlevis ZiriTadi me­Todebi.

saswavlo kursis Seswavlis winapirobebi

stu­dents gavlili un­da qondes kalkulusi, maTematikuri ana­lizisa da algebris sa­fuZvlebi (bakalavriatSi gaTvalis­wi­ne­buli moculobiT).

saswavlo kursis formati

kviraSi leqcia 2sT, praqtikuli 2sT, laboratoriuli samuSao (cxrils gareT).

saswavlo kursis I nawilis (diferen­ci­aluri gantolebebi) Sinaarsi

nawili I. diferencialuri gantolebebi

1. winasityvaoba

2. Sesavali

3. Cveulebrivi diferencialuri gantolebebi

3.1. pirveli rigis Cveulebrivi diferencialuri gantolebebi. baqteriebis gamravlebis amocana. radiumis daSlis amocana (ix. [1], $$2.1, 2.2, 3.1, [2], Tavi I, $1,)

3.2. pirveli rigis Cveulebrivi diferencialuri gantoleba gancalebad cvladebSi (ix. [1], §2.1, [2], Tavi I, $2, [3], $2.1)

3.3. pirveli rigis erTgvarovani gantoleba (ix. [1], §2.1, [2], Tavi I, $2)

2 sT leqcia, 2 sT praqtikuli

3.4. meore rigis wrfivi Cveulebrivi diferencialuri gantoleba mudmivi koeficientebiT (ix. [1], §4.2, 4.4, [2], Tavi IV, $2)

2 sT leqcia, 2 sT praqtikuli

3.5. gantoleba srul diferencialebSi (ix. [1], §2.3, [2], Tavi I, $4)

3.6. bernulis gantoleba (ix. [1], §2.4, [2], Tavi I, $3)

2 sT leqcia, 2 sT praqtikuli

3.7. normaluri saxis pirveli rigis diferencialuri ganto­lebe­bi (ix. [1], Tavi 6, [2], Tavi V, $1, $2)

2 sT leqcia, 2 sT praqtikuli

3.8. maRali rigis Cveulebrivi diferencialuri gantolebebi (ix. [1], Tavi 3 da 4, [2], Tavi III, $$1,2, Tavi IV, $$1,3)


4. kerZowarmoebuliani diferencialuri gantolebebi

4.1. Sesavali (ix. [2], Tavi V, $3)

4.2. pirveli rigis kerZowarmoebuliani diferencialuri gan­to­le­bebi (ix. [2], Tavi V, $4)

4.3. meore rigis kerZowarmoebuliani diferencialuri gan­to­le­bebi (ix. [2], Tavi V, $5)

2 sT leqcia, 2 sT praqtikuli
5. maTematikuri modelebis Sesaxeb biologiaSi, qimiaSi medici­nasa da eko­­logiaSi (ix. [1], Tavi 2, A,B,C,D, Tavi 3, A,B,C,D, Tavi 4,A,B,C, Tavi 6, A,B,C, Tavi 7,A,B,C, Tavi 8, A,B,C,D,E)

5.1. balansis meTodi (ix. [3], Tavi 3, $2, 2.1)

5.2. populaciis malTusis diferencialuri modeli (ix. [3], Tavi 3, $2, 2.2)

2 sT leqcia, 2 sT praqtikuli

5.3. “mtacebeli _ msxverplis” maTematikuri modeli (ix. [3], Tavi 3, $2, 2.3)

5.4. epidemiologiis umartivesi maTematikuri modelebi (ix. [4], Tavi 3, $2, 2.4)

5.5. naxSirbadis daJangvis maqsimaluri siCqaris gansazRvra (ix. damatebiTi literatura [2], 1.7.1)

2 sT leqcia, 2 sT praqtikuli

5.6. fotoqimiuri procesebis maqsimaluri ganaTebulobis dad­ge­na (ix. damatebiTi literatura [2], 1.7.4)
nawili II. maTematikuri fizikis gantolebebi

1. maTematikuri fizikis ZiriTadi gantolebebi

1.1. simis rxevis gantoleba (ix.[7], $3,1)

1.2. membranis rxevis gantoleba (ix.[7], $3,1)

1.3. difuziis gantolebebi (ix.[4], §5 da [7] §2,2)

2 sT leqcia, 2 sT praqtikuli


2. kerZowarmoebuliani diferencialuri gantolebebis klasi­fi­ka­cia

2.1. kerZowarmoebuliani diferencialuri gantolebis cneba (ix. [8], Tavi I, §1, 10 da [5], Tavi V, §1)

2 sT leqcia, 2 sT praqtikuli

2.2. tipebad dayofa (ix. [8], Tavi I, §1, 20)

2.3. meore rigis wrfivi kerZowarmoebuliani diferencia­luri gantolebebi (ix. [8], Tavi I, §1, 30)

2.4. meore rigis wrfivi kerZowarmoebuliani diferencia­luri gantolebebis sistemebi (ix. [8], Tavi I, §1, 40)

2.5. meore rigis wrfivi gantolebebis maxasiaTebeli wirebi da zedapirebi (ix. [8], Tavi I, §1, 50)

2.6. koSi-kovalevskaias da holmgrenis Teoremebi (ix. [5], Tavi V, §1,5, [7]; Tavi I, §4,8 da [9], Tavi VII, §1)

2 sT leqcia, 2 sT praqtikuli
3. elifsuri gantolebebi

3.1. harmoniuli funqciebis ZiriTadi Tvisebebi (ix. [4], Tavi II, §2 da [9], Tavi I, §1)

2 sT leqcia, 2 sT praqtikuli

3.2. grinis funqcia da dirixles amocanis amoxsna sferosa da na­xevarsivrcisTvis (ix. [9], Tavi I, §2 da [5], Tavi VII, §5, 5.1)

2 sT leqcia, 2 sT praqtikuli
4. hiperboluri gantolebebi

4.1. talRis gantoleba (ix. [9], Tavi III, §§1,2 da [5], Tavi V, §2,3)

4.2. koSis da gursas amocanebi talRis gantolebisTvis.Aara­ko­reqtulad Casmuli amocanebi (ix. [9], Tavi III, §3)

2 sT leqcia, 2 sT praqtikuli

5. paraboluri gantolebebi

5.1. siTbogamtareblobis gantoleba (ix. [9], Tavi IV, §1 da [5], Ta­vi V, §2,4)

5.2. koSi-dirixles amocana (ix. [9], Tavi IV, §2)

2 sT leqcia, 2 sT praqtikuli


6. maTematikuri fizikis gantolebebis gamokvlevis ZiriTadi meTodebi

6.1 cvladTa gancalebis meTodi (ix. [9], Tavi VI, §1)

6.2 integraluri gardaqmnebis meTodi (ix. [9], Tavi VI, §2 da [5], Tavi III)

6.3 variaciuli meTodebi (ix. [9], Tavi VI, §4 da [5], Tavi VII, §1)

6.4 ricxviTi meTodebi (ix. [9], Tavi VI, §3 da [6], Tavi XII, §1)

2 sT leqcia, 2 sT praqtikuli



laboratoriuli samuSaoebi (ix. [10])

  1. Cveulebrivi diferencialuri gantolebebi;

  2. pirveli rigis kerZowarmoebuliani diferencialuri ganto­le­bebi;

  3. maTematikuri modelebis Sesaxeb biologiaSi, medicinasa da eko­­logiaSi;

  4. maTematikuri fizikis ZiriTadi gantolebebi



literatura

1. Martha L. Abell, James P. Braselton, Modern Differential Equations, Brooks/Cole,, Thomson Learning, Printed in the USA, 2001

2. А. Г. Школьник, Дифференциальные уравнения, Москва, Учпед­гиз, 1963

3. h. melaZe, n. sxirtlaZe, gamoyenebiTi maTematikis sawyisebi, Tbilisis universitetis gamomcemloba, 2000

4. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol.1-Physical Origins and Potential Theory, Springer-Verlag, Berlin, Heidelberg, 1988

5. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol.2-Functional and Variational Methods, Springer-Verlag, Berlin, Heidelberg, 1988

6. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol.4- Integral Equations and Numerical Methods, Springer-Verlag, Berlin, Heidelberg, 1988

7. В. С. Владимиров, Уравнения математической физики, Мос­ква, »Наука», 1981

8. А. В. Бицадзе, Некоторые классы уравнений в частных про­из­водных, Москва, »Наука», 1981

9. А. В. Бицадзе, Уравнения математической физики, Москва, »Наука», 1982

10. G. Hsiao. Differential Equations, Computing Lab, Newark, Delaware, 1994


Sefaseba

kolokviumi (weriTi formiT, sami sakiTxi, TiToeuli swori pa­su­xi fasdeba 5 qulamde);

saboloo gamocda oTxsakiTxiani bileTebiT. TiTeul sakiTxze pa­suxi fasdeba 10 qulamde).





daswreba

10%



praqtikuli mecadineoba(15%), laboratoriuli samuSaoebi (5%)

20%



kolokviumi

15%



kolokviumi

15%



saboloo gamocda

40%

saboloo Sefaseba

100%

  • gamocdaze daSvebis winapiroba: aranakleb 30 qulisa 1-4 kom­po­nentebSi

kreditis miniWebis aucilebebi piroba: aranakleb 21 qulisa sa­bo­loo gamocdaSi

savaldebulo literatura

1. Martha L. Abell, James P. Braselton, Modern Differential Equations, Brooks/Cole,, Thomson Learning, Printed in the USA, 2001

2. А. Г. Школьник, Дифференциальные уравнения, Москва, Учпед­гиз, 1963

3. h. melaZe, n. sxirtlaZe, gamoyenebiTi maTematikis sawyisebi, Tbilisis universitetis gamomcemloba, 2000

4. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol.1-Physical Origins and Potential Theory, Springer-Verlag, Berlin, Heidelberg, 1988

5. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol.2-Functional and Variational Methods, Springer-Verlag, Berlin, Heidelberg, 1988

6. R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Vol.4- Integral Equations and Numerical Methods, Springer-Verlag, Berlin, Heidelberg, 1988

7. В. С. Владимиров, Уравнения математической физики, Мос­ква, »Наука», 1981

8. А. В. Бицадзе, Некоторые классы уравнений в частных про­из­водных, Москва, «Наука», 1981

9. А. В. Бицадзе, Уравнения математической физики, Москва, »Наука», 1982

10. G. Hsiao. Differential Equations, Computing Lab, Newark, Delaware, 1994



damatebiTi litera­tu­ra da sxva sas­wav­lo masala

1. Филиппов А.Ф. Введение в теорию дифференциальных урав­нений. М.: УРСС, 2004

2. g. xaJalia. Cveulebrivi diferencialuri gantolebebi, Tbi­lisi, 1961.

3. Филиппов А.Ф. Сворник задач по дифференциальным урав­не­ниям. М.: Наука, 1979

4. Кигурадзе И. Начальная и краевые задачи для систем обык­новенных дифференциальных уравне­ний I. Тбилиси, 1997

5. К, Ректорис, Вариационные методы в математической физи­ке, Москва, ,,Наука”,1981

6. jangvelaZe T. Cveulebrivi diferencialuri gantolebebis miaxloebiTi amoxsnis meTodebi, Tsu, Tbilisi, 2005

7. F. John, Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, New York, 1978

8. Б. М. Будак, А.А. Самарский, А.Н. Тихонов, Сборник задач по математической физике, Москва, ,,Наука”, 1972



9. А. В. Бицадзе, Д. Т. Калининченко, Сборник задач по урав­не­ни­ям математической физики, Москва, ,,Наука”, 1985

swavlis Sedegi

kursis gavlis Semdeg studenti ramdenadme gaiRrmavebs da Se­av­­sebs kalkulusSi miRebul codnas. Seiswavlis Cveulebriv di­fe­rencialur gantolebaTa Teoriis safuZvlebs da gaecnoba ker­Zo­war­moebulian diferencialur gantolebaTa Teoriis ele­mentebs. Seiswavlis biologiaSi, qimiaSi, ekologiaSi, medici­na­Si da a. S. maTematikur modelebis agebisa da maTi gamokvlevis me­Todebs.

SeniSvna: winamdebare silabusis Sesabamisi leqciebis kursis mopoveba SeiZleba Semdeg veb-gverdze: http://www.viam.science.tsu.ge/others/ticmi/index.html


Download 116 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish