История появления натуральных чисел и нуля. Теоретико-множественное определение натурального числа и нуля. Теоретико-множественное определение сложения и разности целых неотрицательных чисел. Свойства сложения



Download 1,03 Mb.
bet33/60
Sana21.02.2022
Hajmi1,03 Mb.
#40272
TuriЛекция
1   ...   29   30   31   32   33   34   35   36   ...   60
Bog'liq
Лекция1

Определение. Пусть а целое неотрицательное число, а b - число натуральное. Разделить а на b с остатком - это значит найти такие целые неотрицательные числа q и r, что а = b q + r , причем 0 < r г < b.
Из этого определения следует, что делить с остатком можно не только большее число на меньшее, но и меньшее на большее. Например, при делении числа 5 на 9 получаем, что неполное частное равно 0, а остаток 5: 5=0×9 + 5. Вообще если а < b то при делении а на b с остатком получаем q = 0 и r = а.
Если при делении а на b с остатком оказывается, что = 0. то говорят, что имеем деление нацело. Вообще = 0 тогда и только тогда, когда а делится на b.
В связи с этим новым действием возникают вопросы: если заданы числа а и b, всегда ли можно найти такие q и r,что будет выполняться равенство а = b q + r , причем 0 < r г < b. Если такая пара чисел q и r существует, то единственна ли она для заданных чисел а и b. Ответ на эти вопросы дает следующая теорема.
Теорема 29. Для любого целено неотрицательного числа а и натурального b > существуют целые неотрицательные числа q и r, такие, что а = b q + r, причем 0 < r < b. И эта пара чисел q и r г единственная для: заданных а и b .
Доказательство существования. Обозначим через М множество целых неотрицательных чисел, кратных и не превосходящих а:
М = {х\х = bу, х £ а}
Так как для всех чисел из этого множества выполняется неравенство х £ а + 1, то в множестве М есть наибольшее число, которое обозначим через х₀.
Это число = имеет вид х₀ = bq, причем число b(q + 1) уже не при­надлежит множеству М и поэтому b(q + 1) > а.Итак, найдено число q, такое, что bq <а< b(q + 1) Из этих неравенств следует, что 0 < а - bq < b Если обозначитьа – bq через r. то имеем: а bq = r, т.е. а = b q + r и 0 £ r < b. Это означает, что q - неполное частное, а rг -остаток при делении а на b.
Доказательство единственности. Предположим, что b q + r, где 0 £ r < и а = b q₁ + r₁, где 0 £ r₁ < b, причем, например, r₁,. Тогда имеем: b q + r = b q₁ + r₁, и поэтому r - r₁ = b q₁ - b q= b( q₁ - q). Поскольку 0 £ r₁ < b, то r - r₁ < b. С другой стороны, r - r₁ = b( q₁ - q) и потому делится на b.
Пришли к противоречию, так как натураль­ное число, меньшее, чем b, не может делиться на b . Это противоре­чие и доказывает, что другой пары чисел с требуемыми свойствами не существует, следовательно, деление с остатком однозначно опре­делено.
В любом начальном курсе математики изучается деление с остатком, так как оно лежит в основе алгоритма деления многозначного числа на многозначное. При этом часто используется запись: 9:2 = 4 (ост. 1). Учащиеся запоминают, что если при делении получается остаток, то он всегда меньше делителя.
Аксиоматическая теория описывает натуральное число как элемент бесконечного ряда, в котором числа располагаются в определенном порядке, существует первое число и т.д. Другими словами, в аксиоматике раскрывается порядковый смысл натурального числа. Но натуральные числа имеют и количественный смысл. Чтобы выяснить, как связаны между собой эти два смысла натурального числа, рассмотрим такие понятия, как отрезок натурального ряда, конечное множество, счет, и другие.
Определение. Отрезком Nа натурального ряда называется множество натуральных чисел, не превосходящих натурального числа а.
Используя запись множества, для элементов которого указано характеристическое свойство, можно записать, что  а}. N и х = {х\ х
Например, отрезок N7 - это множество натуральных чисел, не превосходящих числа 7, т.е. N7 = {1,2,3,4, 5, 6, 7}.
Отметим два важных свойства отрезков натурального ряда.
1) Любой отрезок  содержит единицу. Это свойство вытекает из определения отрезка .
2) Если число х содержится в отрезке  а, то и непосредственно следующее за ним число х+1 также содержится ви х Nа.
Действительно, если х  Nаи х  ато х < а. Это означает, что существует такое натуральное число с, что а = х + с. Если с= 1, то а= х + с. Если с = 1, то а = х + 1, а значит, х + 1 содержится в Nа. Если же с > 1, то с - 1 – натуральное число и, следовательно, а = х + с = (х + 1) + (с - 1). Но тогда х + 1 < а, т.е. х + 1 - натуральное число, принадлежащее отрезку .
Определение. Множество А называется конечным, если оно равномощно некоторому отрезку Nа натурального ряда.
Например, множество А вершин треугольника - конечное множество так как оно равномощно отрезку N3 = {1, 2, 3}, т, е. А ~ N3.
Теорема 31. Всякое непустое конечное множество равномощно одному и только одному отрезку натурального ряда,
Доказательство этой теоремы мы опускаем.
Определение. Если непустое конечное множество А равномощно отрезку Nато натуральное число а называют числом элементов множества А и пишут п(А) = а.
Например, если А - множество вершин треугольника, то п(А) = 3. Из данного определения и теоремы 31 получаем, что для любого непустого конечного множества А числоа п(А) единственное.
Определение. Установление взаимно однозначного соответствия между элементами непустого конечного множества А и отрезком натурального ряда называется счетом элементов множества Л.
Так как всякое непустое конечное множество равномощно только одному отрезку натурального ряда, то число элементов, т.е. результат счета не зависит от того, в каком порядке будут пересчитываться эле­менты множества. Поэтому можно какому-либо элементу множества А поставить в соответствие число 1 и больше этот элемент не рассмат­ривать. Затем какому-либо из оставшихся элементов сопоставить чис­ло 2 и больше его не рассматривать. Продолжая это построение, по­следнему оставшемуся элементу мы поставим в соответствие число а.
В процессе счета мы не только найдем число элементов множества А, но и упорядочим его: элемент, которому соответствует число 1, пер­вый; элемент, которому сопоставлено число 2, - второй, и т.д.
Таким образом, всякое натуральное число а можно рассматривать как характеристику численности некоторого конечного множества А. Натуральное число а имеет при этом количественный смысл.



Download 1,03 Mb.

Do'stlaringiz bilan baham:
1   ...   29   30   31   32   33   34   35   36   ...   60




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish