Investments, tenth edition


The Optimal Risky Portfolio in the Single-Index Model



Download 14,37 Mb.
Pdf ko'rish
bet388/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   384   385   386   387   388   389   390   391   ...   1152
Bog'liq
investment????

  The Optimal Risky Portfolio in the Single-Index Model 

 The single-index model allows us to solve for the optimal risky portfolio directly and to 

gain insight into the nature of the solution. First we confirm that we easily can set up the 

optimization process to chart the efficient frontier in this framework along the lines of the 

Markowitz model. 

 With the estimates of the beta and alpha coefficients, plus the risk premium of the 

index portfolio, we can generate the  n     1  1 expected returns using Equation 8.9. With 

the estimates of the beta coefficients and residual variances, together with the variance of 

the index portfolio, we can construct the covariance matrix using Equation 8.10. Given 

a  column of risk premiums and the covariance matrix, we can conduct the optimization 

program described in Chapter 7. 

 We can take the description of how diversification works in the single-index framework 

of Section 8.2 a step further. We showed earlier that the alpha, beta, and residual  variance 

of an equally weighted portfolio are the simple averages of those parameters across 

 component securities. This result is not limited to equally weighted portfolios. It applies 

to any portfolio, where we need only replace “simple average” with “weighted average,” 

using the portfolio weights. Specifically,

   


 a

P

5 a


n

11

i

51

w

i

a

i

  

 and for the index, a



n

11

5 a



M

5 0


 

 b

P

5 a

n

11

i

51

w

i

b

i

  

 and for the index, b



n

11

5 b



M

5 1


  

(8.18) 


 

 s

2



(e

P

)

5 a



n

11

i

51

w

i

2

s



2

(e



i

)  and for the index, s

2

(e



n

11

)



5 s

2

(e



M

)

5 0  



The objective is to maximize the Sharpe ratio of the portfolio by using portfolio weights

 w  

1

 , . . . ,  w  



 n   1  1

 . With this set of weights, the expected return, standard deviation, and Sharpe 

ratio of the portfolio are

    E(R



P

)

5 a



P

E(R



M

)b

P

5 a

n

11

i

51

w

i

a

i

E(R

M

) a


n

11

i

51

w

i

b

i

 

 s

P



5 3b

P

2

s



M

2

1 s



2

(e



P

)

4



1/2

5 Bs


M

2

¢ a



n

11

i

51

w

i

b

i

2

1 a



n

11

i

51

w

i

2

s



2

(e



i

)

R



1/2

  

(8.19) 



 

 S



P

5

E(R



P

)

s



P

 

  



bod61671_ch08_256-290.indd   273

bod61671_ch08_256-290.indd   273

6/21/13   4:10 PM

6/21/13   4:10 PM

Final PDF to printer



274 

P A R T   I I

  Portfolio Theory and Practice

  

13



 The definition of correlation implies that    r(R

A

R



M

)

5



Cov(R

A

R



M

)

s



A

s

M

5 b

A

 

s



M

s

A

.  Therefore, given the ratio of SD, 

a higher beta implies higher correlation and smaller benefit from diversification than when  b   5  1 in Equation 8.20. 

This requires the modification of Equation 8.21. 

 At this point, as in the Markowitz procedure, we could use Excel’s optimization  program 

to maximize the Sharpe ratio subject to the adding-up constraint that the portfolio weights 

sum to 1. However, this is not necessary because when returns follow the index model, 

the optimal portfolio can be derived explicitly, and the solution for the optimal portfolio 

provides insight into the efficient use of security analysis in portfolio construction. It is 

instructive to outline the logical thread of the solution. We will not show every algebraic 

step, but will instead present the major results and interpretation of the procedure. 

 Before delving into the results, let us first explain the basic trade-off the model reveals. 

If we were interested only in diversification, we would just hold the market index. Security 

analysis gives us the chance to uncover securities with a nonzero alpha and to take a differ-

ential position in those securities. The cost of that differential position is a departure from 

efficient diversification, in other words, the assumption of unnecessary firm-specific risk. 

The model shows us that the optimal risky portfolio trades off the search for alpha against 

the departure from efficient diversification. 

 The optimal risky portfolio turns out to be a combination of two component portfolios: 

(1) an  active portfolio,  denoted by  A,  comprised of the  n  analyzed securities (we call this 

the  active  portfolio because it follows from active security analysis), and (2) the market-

index portfolio, the ( n   1  1)th asset we include to aid in diversification, which we call the 

 passive portfolio  and denote by  M.  

 Assume first that the active portfolio has a beta of 1. In that case, the optimal weight 

in the active portfolio would be proportional to the ratio  a  

 A 

 / s  


2

 ( e  

 A 

 ). This ratio balances the 

contribution of the active portfolio (its alpha) against its contribution to the portfolio vari-

ance (via residual variance). The analogous ratio for the index portfolio is    E(R



M

)/s


M

2

,   and 



hence the initial position in the active portfolio (i.e., if its beta were 1) is

 

   w



A

0

5



a

A

s

A

2

E(R

M

)

s



M

2

 



 (8.20)   

 Next, we amend this position to account for the actual beta of the active portfolio. For 

any level of    s

A

2

,  the correlation between the active and passive portfolios is greater when 



the beta of the active portfolio is higher. This implies less diversification benefit from the 

passive portfolio and a lower position in it. Correspondingly, the position in the active 

portfolio increases. The precise modification for the position in the active portfolio is:  

13

   



 

   w



A

*

5



w

A

0

1



1 (1 2 b

A

)w



A

0

 



 (8.21)   

 Notice that when    b



A

5 1, w



A

*

w



A

0

.   




Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   384   385   386   387   388   389   390   391   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish