Investments, tenth edition



Download 14,37 Mb.
Pdf ko'rish
bet365/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   361   362   363   364   365   366   367   368   ...   1152
Bog'liq
investment????

 Example  7B.2 

Portfolio Rate of Return 



 Spreadsheet 7B.1 

 Scenario analysis for bonds   



A

B

C

D

E

G

F

1

2

3

4

5

6

7

8

9

10

11

12

Scenario rates of return

r

D

(i)

r

D

(i)

 

+ 0.03



0.4*r

D

(i)

Mean


Cell C8

-

0.10



0.00

0.10


0.32

0.080


=SUMPRODUCT($B$4:$B$7,C4:C7)

-

0.07



0.03

0.13


0.35

0.110


-

0.040


0.000

0.040


0.128

0.032


0.14

0.36


0.30

0.20


Probability

1

2



3

4

Scenario



e

X

c e l

Please visit us at 



  www.mhhe.com/bkm  

Spreadsheet 7B.2

Scenario analysis for bonds and stocks



H

I

J

K

L

1

2

3

4

5

6

7

8

9

10

11

12

Scenario rates of return

Portfolio return

0.4*r

D

(i)+0.6*r

E

(i)

r

D

(i)

r

E

(i)

0.14


0.36

0.30


0.20

-

0.10



0.00

0.10


0.32

0.08


Mean

Cell L4


=0.4*J4+0.6*K4

Cell L8


=SUMPRODUCT($I$4:$I$7,L4:L7)

-

0.35



0.20

0.45


-

0.19


0.12

-

0.2500



0.1200

0.3100


0.0140

0.1040


1

2

3



4

Probability

Scenario

e

X

c e l

Please visit us at 



  www.mhhe.com/bkm  

bod61671_ch07_205-255.indd   250

bod61671_ch07_205-255.indd   250

6/18/13   8:12 PM

6/18/13   8:12 PM

Final PDF to printer




Visit us at www

.mhhe.com/bkm

  C H A P T E R  

7

  Optimal Risky Portfolios 



251

  

Variance and Standard Deviation 

 The variance and standard deviation of the rate of return on an asset from a scenario analy-

sis are given by  

15

      


 

s

2



(r)

5 a


n

i

51

p(i)

3r(i) 2 E(r)4

2

 



 (7B.4)   

s(r)

5 "s

2

(r)



 Notice that the unit of variance is percent squared. In contrast, standard deviation, the 

square root of variance, has the same dimension as the original returns, and therefore is 

easier to interpret as a measure of return variability. 

 When you add a fixed incremental return, D, to each scenario return, you increase the 

mean return by that same increment. Therefore, the deviation of the realized return in each 

scenario from the mean return is unaffected, and both variance and SD are unchanged. In 

contrast, when you multiply the return in each scenario by a factor  w,  the variance is mul-

tiplied by the square of that factor (and the SD is multiplied by  w ):   

Var(wr)

5 a


n

i

51

p(i)

3 3wr(i) 2 E(wr)4

2

w



2

a

n



i

51

p(i)

3r(i) 2 E(r)4

2

w



2

s

2



 SD(wr)

5 "w

2

s

2



ws(r

 (7B.5)   

 Excel does not have a direct function to compute variance and standard deviation for 

a scenario analysis. Its STDEV and VAR functions are designed for time series. We need 

to calculate the probability-weighted squared deviations directly. To avoid having to 

first compute columns of squared deviations from the mean, however, we can simplify 

our problem by expressing the variance as a difference between two easily computable 

terms:   

s

2

(r) 5 E[r 2 E(r)]



2

 5 E{r

2

 1 [E(r)]



2

 2 2rE(r)}

 

E(r



2

)

1 3E(r)4



2

2 2E(r)E(r

 (7B.6)   

E(r

2

)

2 3E(r)4



2

5 a


n

i

51

p(i)r(i)

2

2 B a


n

i

51

p(i)r(i)

R

2

  



15

 Variance (here, of an asset rate of return) is not the only possible choice to quantify variability. An alternative 

would be to use the  absolute  deviation from the mean instead of the  squared  deviation. Thus, the mean absolute 

deviation (MAD) is sometimes used as a measure of variability. The variance is the preferred measure for several 

reasons. First, working with absolute deviations is mathematically more difficult. Second, squaring deviations 

gives more weight to larger deviations. In investments, giving more weight to large deviations (hence, losses) is 

compatible with risk aversion. Third, when returns are normally distributed, the variance is one of the two param-

eters that fully characterize the distribution. 

 You can compute the first expression,  E ( r  

2

 ), in Equation 7B.6 using Excel’s SUM-



PRODUCT function. For example, in  Spreadsheet 7B.3 ,  E ( r  

2

 ) is first calculated in 



cell C21 by using SUMPRODUCT to multiply the scenario probability times the 

asset return times the asset return again. Then [ E ( r )] 

2

  is subtracted (notice the sub-



traction of C20 

2

  in cell C21), to arrive at variance. 



 Example  7B.3 

Calculating the Variance of a Risky Asset in Excel 

bod61671_ch07_205-255.indd   251

bod61671_ch07_205-255.indd   251

6/18/13   8:12 PM

6/18/13   8:12 PM

Final PDF to printer



Visit us at www

.mhhe.com/bkm

252 

P A R T   I I



  Portfolio Theory and Practice

  The variance of a  portfolio  return is not as simple to compute as the mean. The portfolio 

variance is  not  the weighted average of the asset variances. The deviation of the portfolio 

rate of return in any scenario from its mean return is   



r

P

E(r



P

)

w



D

r

D

(i)

w

E

r

E

(i)

2 3w

D

E(r

D

)

w



E

E(r

E

)

4



 

w



D

3r



D

(i)

E(r

D

)

4 1 w



E

3r



E

(i)

E(r

E

)

4  



 (7B.7) 

w



D

d(i)

w



E

e(i

where the lowercase variables denote deviations from the mean:   



d() = r

D

(i) 2 E(r



D

)

e() 5 r



E

() 2 E(r



We express the variance of the portfolio return in terms of these deviations from the mean 



in Equation 7B.7:   

s

P

2

5 a


n

i

51

p(i)

3r

P

E(r



P

)

4



2

5 a


n

i

51

p(i)

3w

D

d(i)

w



E

e(i)

4

2



5 a

n

i

51

p(i)

3w

D

2

d(i)

2

w



E

2

e(i)

2

1 2w



D

w

E

d(i)e(i)

4

w



D

2

a



n

i

51

p(i)d(i)

2

w



E

2

a



n

i

51

p(i)e(i)

2

1 2w



D

w

E

a

n



i

51

p(i)d(i)e(i)

 

w



D

2

s



D

2

w



E

2

s



E

2

1 2w



D

w

E

a

n



i

51

p(i)d(i)e(i

 

(7B.8)


  

The last line in Equation 7B.8 tells us that the variance of a portfolio is the weighted sum 

of portfolio variances (notice that the weights are the squares of the portfolio weights), 

plus an additional term that, as we will soon see, makes all the difference. 

 Notice also that  d ( i )  3   e ( i ) is the product of the deviations of the scenario returns of the 

two assets from their respective means. The probability-weighted average of this product is 

its expected value, which is called  covariance  and is denoted Cov( r  

 D 

 ,  r  

 E 

 ).  The  covariance 

between the two assets can have a big impact on the variance of a portfolio.  



  Covariance 

 The covariance between two variables equals   

 Cov(r

D

r



E

)

E(e) 5 E5 3r



D

E(r



D

)

4 3r



E

E(r



E

)

46 



 (7B.9)  

E(r



D

r

E

)

E(r



D

)E(r



E

)


Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   361   362   363   364   365   366   367   368   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish