Investments, tenth edition



Download 14,37 Mb.
Pdf ko'rish
bet265/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   261   262   263   264   265   266   267   268   ...   1152
Bog'liq
investment????

 Figure 5.9 

Probability of investment outcomes after 25 years with 

a lognormal distribution (approximated from a binomial tree)  

0

.005



.01

.015


.02

.025


.03

.035


.04

.045


.05

0

20



40

60

80



100

120


140

160


180

200


Probability of Outcome

Investment Outcome (truncated at $200)

Tail 

= $0.00002



Tail 

= $10,595,634

to (1  1   r  

1

 )(1  1   r  



2

 )  2  1, which is  not

normally distributed. Perhaps the 

normal distribution does not qualify 

as the simplifying distribution we 

purported it to be. But the lognor-

mal distribution does! What is this 

distribution? 

 Technically, a random variable  X

is lognormal if its logarithm, ln( X ), 

is normally distributed. It turns 

out that if stock prices are “instan-

taneously” normal (i.e., returns 

over the shortest time intervals are 

normally distributed) then their 

 longer-term compounded returns and 

the future stock price will be log-

normal.  

20

   Conversely, if stock prices 



are distributed lognormally, then 

the continuously compounded rate 

of return will be normally distrib-

uted. Thus, if we work with continuously compounded (CC) returns rather than effec-

tive per period rates of return, we can preserve the simplification provided by the 

normal distribution, since those CC returns will be normal regardless of the invest-

ment horizon.

  

 Recall that the continuously compounded rate is  r  



 CC 

      5   ln(1   1     r ), so if we observe 

effective rates of return, we can use this formula to compute the CC rate. With  r  

 CC 

   nor-

mally distributed, we can do all our analyses and calculations using the normally distrib-

uted CC rates. If needed, we can always recover the effective rate,  r , from the CC rate 

from:     e



r

CC

2 1.  


 Let’s see what the rules are when a stock price is lognormally distributed. Suppose the 

log of the stock price is normally distributed with an expected annual growth rate of  g

and a SD of  s . When a normal rate compounds by random shocks from instant to instant, 

the fluctuations do not produce symmetric effects on price. A positive uptick raises the 

base, so the next tick is expected to be larger than the previous one. The reverse is true 

after a downtick; the base is smaller and the next tick is expected to be smaller. As a 

result, a sequence of positive shocks will have a larger upward effect than the downward 

effect of a sequence of negative shocks. Thus, an upward drift is created just by volatil-

ity, even if  g  is zero. How big is this extra drift? It depends on the amplitude of the ticks; 

in fact, it amounts to half their variance. Therefore  m,  the expected continuously com-

pounded expected rate of return, is larger than  g.  The rule for the expected CC annual 

rate becomes,   

 

E(r

CC

) 5 1

 

½

 



 s

2

   



 (5.21)   

20

 We see a similar phenomenon in the binomial tree example depicted in  Figure  5.9 . Even with many bad 



returns, stock prices cannot become negative, so the distribution is bounded at zero. But many good returns can 

increase stock prices without limit, so the compound return after many periods has a long right tail, but a left tail 

bounded by a worst-case cumulative return of  2 100%. This gives rise to the asymmetric skewed shape that is 

characteristic of the log-normal distribution. 

bod61671_ch05_117-167.indd   154

bod61671_ch05_117-167.indd   154

6/18/13   8:04 PM

6/18/13   8:04 PM

Final PDF to printer



  C H A P T E R  

5

  Risk, Return, and the Historical Record 



155

 With a normally distributed CC rate, we expect that some initial wealth of $ W  

0

  will com-



pound over one year to    W

0

e



g1

½

 



s

2

We



m

,  and hence the expected effective rate of return is   

 

E(r) 5 e

g1

½

 



s

2

2 1 5 e



m

2 1 


 (5.22)   

 If an annual CC rate applies to an investment over any period  T,  either longer or shorter 

than one year, the investment will grow by the proportion    () 5 e

r

CC

T

2 1.   The  expected 

cumulative return,  r  

 CC 

  T , is proportional to  T , that is,    E(r

CC

) 5 mT gT 1 ½

 

s



2

T   and 

expected final wealth is   

 

E(W

T

) 5 W

0

 e



mT

W

0

e

(g1

½

 

s



2

)T

 

 (5.23)   



 

The variance of the cumulative return is also proportional to the time horizon: 

Var( r  

 CC 

  T )  5   T Var( r  

 CC 

 ),  

21

   but standard deviation rises only in proportion to the square root 



of time:    s(r

CC

) 5

"TVar(r



CC

) 5 s


"T.   

 This   appears 

 to offer a mitigation of investment risk in the long run: Because 

the expected return increases with horizon at a faster rate than the standard deviation, the 

expected return of a long-term risky investment becomes ever larger relative to its standard 

deviation. Perhaps shortfall risk declines as investment horizon increases. We look at this 

possibility in Example 5.11. 

 

  



21

 The variance of the effective annual rate when returns are lognormally distributed is: Var( r )  5   e  

m 

 (   


  

 e

s

2

  2  1). 



   

22

 In some versions of Excel, the function is NORM.S.DIST(z, TRUE). 



 An expected effective monthly rate of return of 1% is equivalent to a CC rate of 

ln(1.01)  5  0.00995 (0.995% per month). The risk-free rate is assumed to be 0.5% per 

month, equivalent to a CC rate of ln(1.005)   5   0.4988%. The effective SD of 4.54% 

implies (see footnote   21  ) a monthly SD of the CC rate of 4.4928%. Hence the monthly 

CC risk premium is 0.995  2  0.4988  5  0.4963%, with a SD of 4.4928%, and a Sharpe 

ratio of .4963/4.4928  5  0.11. In other words, returns would have to be .11 standard 

deviations below the mean before the stock portfolio underperformed T-bills. Using the 

normal distribution, we see that the probability of a rate of return shortfall relative to 

the risk-free rate is 45.6%. (You can confirm this by entering  2 .11 in Excel’s NORMSDIST 

function.  

22

  ) This is the probability of investor “regret,” that after the fact, the investor 



would have been better off in T-bills than investing in the stock portfolio. 

 For a 300-month horizon, however, the expected value of the cumulative excess 

return is .4963%  3  300  5  148.9% and the standard deviation is    4.4928

"300 5 77.82,  

implying a whopping Sharpe ratio of 1.91. Enter  2 1.91 in Excel’s NORMSDIST function, 

and you will see that the probability of shortfall over a 300-month horizon is only .029. 




Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   261   262   263   264   265   266   267   268   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish