Investments, tenth edition


A  Risk-Neutral  Shortcut



Download 14,37 Mb.
Pdf ko'rish
bet910/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   906   907   908   909   910   911   912   913   ...   1152
Bog'liq
investment????

  A  Risk-Neutral  Shortcut 

 We pointed out earlier in the chapter that the binomial 

model valuation approach is arbitrage-based. We can value 

the option by replicating it with shares of stock plus bor-

rowing. The ability to replicate the option means that its 

price relative to the stock and the interest rate must be 

based only on the technology of replication and  not  on risk 

preferences. It cannot depend on risk aversion or the capi-

tal asset pricing model or any other model of equilibrium 

risk-return relationships. 

 This insight—that the pricing model must be inde-

pendent of risk aversion—leads to a very useful shortcut 

to valuing options. Imagine a  risk-neutral economy,  that 

is, an economy in which all investors are risk-neutral. This 

hypothetical economy must value options the same as our 

real one because risk aversion cannot affect the valuation 

formula. 

 In a risk-neutral economy, investors would not 

demand risk premiums and would therefore value all 

assets by discounting expected payoffs at the risk-free 

rate of interest. Therefore, a security such as a call option 

would be valued by discounting its expected cash flow 

at the risk-free rate:    

E”(CF)



C 

5

1



r

f

 . We put the expectation 

operator  E  in quotation marks to signify that this is not 

the  true expectation, but the expectation that would 

prevail in the hypothetical risk-neutral economy. To be 

consistent, we must calculate this expected cash flow 

using the rate of return the stock  would  have in the risk-

neutral economy,  not  using its true rate of return. But 

if we successfully maintain consistency, the value derived 

for the hypothetical economy should match the one in 

our own. 

 How do we compute the expected cash flow from the 

option in the risk-neutral economy? Because there are no 

risk premiums, the stock’s expected rate of return must 

equal the risk-free rate. Call  

p  the probability that the 

stock price increases. Then  p  must be chosen to equate the 

expected rate of increase of the stock price to the risk-free 

rate (we ignore dividends here): 

E”(S

1

) 5 p(uS) 1 (1 2 p)dS 5 (1 1 r



f

)S

   This implies that     5

1

r



f

d



u

d



. We call  p  a  risk-neutral 

probability  to distinguish it from the true, or “objective,” 

probability. To illustrate, in our two-state example at the 

beginning of Section 21.2, we had  u    5   1.2,   d    5   .9, and 

 r  

 f 

   5  .10. Given these values,    5

1

1 .10 2 .9



1.2

2 .9


5

2

3



.   

 Now let’s see what happens if we use the discounted 

cash flow formula to value the option in the risk-neutral 

economy. We continue to use the two-state example from 

Section 21.2. We find the present value of the option pay-

off using the risk-neutral probability and discount at the 

risk-free interest rate: 

  

E”(CF)



C 

5

1



r

f

p C

u

1 (12pC



d

5

1



r

f

2/3


3 10 1 1/3 3 0

5

1.10



6.06

5

 This answer exactly matches the value we found using our 



no-arbitrage approach! 

 We repeat: This is not truly an expected discounted value. 

    • 

 The  numerator  is not the true expected cash flow from 



the option because we use the risk-neutral probability, 

 p,  rather than the true probability.  

   • 

 The  denominator  is not the proper discount rate for 



option cash flows because we do not account for 

the risk.  

   • 

 In a sense, these two “errors” cancel out. But this is 



not just luck: We are  assured  to get the correct result 

because the no-arbitrage approach implies that risk 

preferences cannot affect the option value. Therefore, 

the value computed for the risk-neutral economy  must  

equal the value that we obtain in our economy.   

 When we move to the more realistic multiperiod 

model, the calculations are more cumbersome, but the 

idea is the same. Footnote 4 shows how to relate  p  to any 

expected rate of return and volatility estimate. Simply set 

the expected rate of return on the stock equal to the risk-

free rate, use the resulting probability to work out the 

expected payoff from the option, discount at the risk-free 

rate, and you will find the option value. These calculations 

are actually fairly easy to program in Excel.  

 WORDS FROM THE STREET 

bod61671_ch21_722-769.indd   736

bod61671_ch21_722-769.indd   736

7/27/13   1:45 AM

7/27/13   1:45 AM

Final PDF to printer




  C H A P T E R  

2 1


 Option 

Valuation 

737

hedged over the coming small interval. By continuously revising the hedge position, the 



portfolio would remain hedged and would earn a riskless rate of return over each inter-

val. This is called  dynamic hedging,  the continued updating of the hedge ratio as time 

passes. As the dynamic hedge becomes ever finer, the resulting option-valuation proce-

dure becomes more precise. The nearby box offers further refinements on the use of the 

binomial model. 

 

    



 In the table in Example 21.3,  u  and  d  both get closer to 1 ( u  is smaller and  d  is larger) as the time interval 

Δ t  shrinks. Why does this make sense? Does the fact that  u  and  d  are each closer to 1 mean that the total 

volatility of the stock over the remaining life of the option is lower? 

 CONCEPT CHECK 



21.5 

    21.4 

Black-Scholes Option Valuation  

 While the binomial model is extremely flexible, a computer is needed for it to be useful in 

actual trading. An option-pricing  formula  would be far easier to use than the tedious algo-

rithm involved in the binomial model. It turns out that such a formula can be derived if one 

is willing to make just two more assumptions: that both the risk-free interest rate and stock 

price volatility are constant over the life of the option. In this case, as the time to expira-

tion is divided into ever-more subperiods, the distribution of the stock price at expiration 

progressively approaches the lognormal distribution, as suggested by  Figure 21.5 . When 

the stock price distribution is actually lognormal, we can derive an exact option-pricing 

formula.  




Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   906   907   908   909   910   911   912   913   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish