Investments, tenth edition



Download 14,37 Mb.
Pdf ko'rish
bet873/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   869   870   871   872   873   874   875   876   ...   1152
Bog'liq
investment????

S

T

 " X

S

T

 + X

Value of call option

0

S

T

 2 X

Value of zero-coupon bond

X

X

    TOTAL



X

S

T

 If the stock price is below the exercise price, the call is worthless, but the bond matures to 

its face value,  X.  It therefore provides a floor value to the portfolio. If the stock price 

bod61671_ch20_678-721.indd   698

bod61671_ch20_678-721.indd   698

7/25/13   2:50 AM

7/25/13   2:50 AM

Final PDF to printer




  C H A P T E R  

2 0


  Options Markets: Introduction 

699


exceeds  X,  then the payoff to the call,  S  

 T 

   2   X,  is added to the face value of the bond to 

provide a total payoff of  S  

 T 

  . The payoff to this portfolio is precisely identical to the payoff 

of the protective put that we derived in  Table 20.1 . 

 If two portfolios always provide equal values, then they must cost the same amount to 

establish. Therefore, the call-plus-bond portfolio must cost the same as the stock-plus-put 

portfolio. Each call costs  C.  The riskless zero-coupon bond costs  X /(1  1   r  

 f   

  ) 


 T 

 .  Therefore, 

the call-plus-bond portfolio costs  C   1   X /(1  1   r  

 f   

  ) 

 T 



 . The stock costs  S  

0

  to purchase now (at 



time zero), while the put costs  P.  Therefore, we conclude that 

 

  C



1

X

(1

r



f

)

T

S

0

P 



 (20.1)   

 Equation 20.1 is called the    put-call  parity  theorem    because it represents the proper 

relationship between put and call prices. If the parity relation is ever violated, an arbi-

trage opportunity arises. For example, suppose you collect these data for a certain 

stock: 

Stock price

$110

Call price (1-year expiration, X 5 $105)



$ 17

Put price (1-year expiration, X 5 $105)

$    5

Risk-free interest rate



5% per year

 We can use these data in Equation 20.1 to see if parity is violated:   

  C

1

X

(1

r



f

)

T

 

5

?



S

0

P



17

1

105



1.05

 

5



?

110


1 5

 117


2 115  

 This result, a violation of parity—117 does not equal 115—indicates mispricing. To exploit 

the mispricing, you buy the relatively cheap portfolio (the stock-plus-put position repre-

sented on the right-hand side of the equation) and sell the relatively expensive portfolio 

(the call-plus-bond position corresponding to the left-hand side). Therefore, if you  buy   the 

stock,  buy  the put,  write  the call, and  borrow  $100 for 1 year (because borrowing money is 

the opposite of buying a bond), you should earn arbitrage profits. 

 Let’s examine the payoff to this strategy. In 1 year, the stock will be worth  S  

 T 

 .  The  $100 

borrowed will be paid back with interest, resulting in a cash outflow of $105. The written 

call will result in a cash outflow of  S  

 T 

   2  $105 if  S  

 T 

  exceeds $105. The purchased put pays 

off $105  2   S  

 T 

  if the stock price is below $105. 

  Table 20.5  summarizes the outcome. The immediate cash inflow is $2. In 1 year, the 

various positions provide exactly offsetting cash flows: The $2 inflow is realized with-

out any offsetting outflows. This is an arbitrage opportunity that investors will pursue on 

a large scale until buying and selling pressure restores the parity condition expressed in 

Equation 20.1.  

 Equation 20.1 actually applies only to options on stocks that pay no dividends before 

the expiration date of the option. The extension of the parity condition for European call 

options on dividend-paying stocks is, however, straightforward. Problem 12 at the end of 

bod61671_ch20_678-721.indd   699

bod61671_ch20_678-721.indd   699

7/25/13   2:50 AM

7/25/13   2:50 AM

Final PDF to printer




700

P A R T   V I

  Options, Futures, and Other Derivatives

the chapter leads you through the demonstration. The more general formulation of the 

 put-call parity  condition is 

 

  P



S

0

1 PV(X) 1 PV(dividends)  



(20.2)   

 where PV(dividends) is the present value of the dividends that will be paid by the stock 

during the life of the option. If the stock does not pay dividends, Equation 20.2 becomes 

identical to Equation 20.1. 

 Notice that this generalization would apply as well to European options on assets other 

than stocks. Instead of using dividend income in Equation 20.2, we would let any income 

paid out by the underlying asset play the role of the stock dividends. For example, European 

put and call options on bonds would satisfy the same parity relationship, except that the 

bond’s coupon income would replace the stock’s dividend payments in the parity formula. 

 Even this generalization, however, applies only to European options, as the cash flow 

streams from the two portfolios represented by the two sides of Equation 20.2 will match 

only if each position is held until expiration. If a call and a put may be optimally exercised 

at different times before their common expiration date, then the equality of payoffs cannot 

be assured, or even expected, and the portfolios will have different values.    




Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   869   870   871   872   873   874   875   876   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish