Investments, tenth edition



Download 14,37 Mb.
Pdf ko'rish
bet367/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   363   364   365   366   367   368   369   370   ...   1152
Bog'liq
investment????

Spreadsheet 7B.4

Three-scenario analysis for stocks and bonds



e

X

c e l

Please visit us at 



  www.mhhe.com/bkm  

A

Rates of Return

Deviation from Mean

B

C

D

E

F

G

H

1

2

3

0.25


0.50

0.25


Mean:

-

2



6

14

6



30

10

-



10

10

-



8

0

8



0

20

0



-

20

0



-

160


0

-

160



-

80

4



5

6

Probability

Bonds

Stocks

Bonds

Stocks

Product of

Deviations

bod61671_ch07_205-255.indd   253

bod61671_ch07_205-255.indd   253

6/18/13   8:12 PM

6/18/13   8:12 PM

Final PDF to printer




Visit us at www

.mhhe.com/bkm

254 

P A R T   I I



  Portfolio Theory and Practice

  Correlation Coefficient 

 Dividing the covariance by the product of the standard deviations of the variables will 

 generate a pure number called  correlation.  We define correlation as follows:   

 Corr (r



D

r



E

)

5



Cov(r

D

r



E

)

s



D

s

E

 

 (7B.11)  



The correlation coefficient must fall within the range [ 2 1,  1]. This can be explained as 

follows. What two variables should have the highest degree comovement? Logic says a 

variable with itself, so let’s check it out.   

Cov(r



D

r



D

)

E5 3r



D

E(r



D

)

4 3 3r



D

E(r



D

)

46



 

3r



D

E(r



D

)

4



2

5 s


D

2

 



 (7B.12)  

Corr(r



D

r



D

)

5



Cov(r

D

r



D

)

s



D

s

D

5

s

D



2

s

D

2

5 1


Similarly, the lowest (most negative) value of the correlation coefficient is  2 1. (Check this 

for yourself by finding the correlation of a variable with its own negative.) 

 An important property of the correlation coefficient is that it is unaffected by both 

addition and multiplication. Suppose we start with a return on debt,  r  

 D 

 , multiply it 

by a constant,  w  

 D 

 , and then add a fixed amount D. The correlation with equity is 

unaffected:   

 Corr(

D 1 w



D

r

D

r



E

)

5



Cov(

D 1 w



D

r

D

r



E

)

"Var(D 1 w



D

r

D

)

3 s



E

 

 (7B.13)   



5

w

D

 Cov(r



D

r



E

)

"w



D

2

s



D

2

3 s



E

5

w



D

 Cov(r



D

r



E

)

w



D

s

D

3 s

E

5 Corr(r



D

r



E

)

 Because the correlation coefficient gives more intuition about the relationship between 



rates of return, we sometimes express the covariance in terms of the correlation coefficient. 

Rearranging Equation 7B.11, we can write covariance as   

 Cov(r

D

r



E

)

5 s



D

s

E

Corr (r

D

r



E

 (7B.14)   



  Spreadsheet 7B.5  shows the covariance and correlation between stocks and bonds 

using the same scenario analysis as in the other examples in this appendix. Covari-

ance is calculated using Equation 7B.9. The SUMPRODUCT function used in cell 

J22 gives us  E ( r  

 D 

      3     r  

 E 

 ), from which we subtract  E ( r  

 D 

 )   3     E ( r  

 E 

 ) (i.e., we subtract 

J20  3  K20). Then we calculate correlation in cell J23 by dividing covariance by the 

product of the asset standard deviations. 



 Example  7B.4 

Calculating Covariance and Correlation 



 

 

  Portfolio Variance 

 We have seen in Equation 7B.8, with the help of Equation 7B.10, that the variance of a 

two-asset portfolio is the sum of the individual variances multiplied by the square of the 

bod61671_ch07_205-255.indd   254

bod61671_ch07_205-255.indd   254

6/18/13   8:12 PM

6/18/13   8:12 PM

Final PDF to printer




Visit us at www

.mhhe.com/bkm

  C H A P T E R  

7

  Optimal Risky Portfolios 



255

portfolio weights, plus twice the covariance between the rates, multiplied by the product 

of the portfolio weights:   

 

s



P

2

w



D

2

s



D

2

w



E

2

s



E

2

1 2w



D

w

E

 Cov(r



D

r



E

 (7B.15)   



w

D

2

s



D

2

w



E

2

s



E

2

1 2w



D

w

E

s

D

s

E

Corr (r



D

r



E

)

H



I

J

K

L

M

13

14

15

16

17

18

19

20

21

22

23

24

25

Scenario rates of return

r

D

(i)

r

E

(i)

0.14


0.36

0.30


0.20

-

0.10



0.00

0.10


0.32

0.08


0.1359

-

0.0034



-

0.0847


Mean

SD

Covariance



Correlation

Cell J22


Cell J23

=SUMPRODUCT(I16:I19,J16:J19,K16:K19)

-

J20*K20


=J22/(J21*K21)

-

0.35



0.20

0.45


-

0.19


0.12

0.2918


1

2

3



4

Probability__Scenario___Spreadsheet_7B.5'>Probability

Scenario

 Spreadsheet 7B.5 

 Scenario analysis for bonds and stocks   



e

X

c e l

Please visit us at 



  www.mhhe.com/bkm  

 We calculate portfolio variance in  Spreadsheet 7B.6 . Notice there that we calcu-

late the portfolio standard deviation in two ways: once from the scenario portfolio 

returns (cell E35) and again (in cell E36) using the first line of Equation 7B.15. The 

two approaches yield the same result. You should try to repeat the second calculation 

using the correlation coefficient from the second line in Equation 7B.15 instead of 

covariance in the formula for portfolio variance. 

 Example  7B.5 

Calculating Portfolio Variance 



A

B

C

D

E

F

G

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

Cell E35 =SUMPRODUCT(B30:B33,E30:E33,E30:E33)

-

E34^2)^0.5



Cell E36 =(0.4*C35)^2+(0.6*D35)^2+2*0.4*0.6*C36)^0.5

Scenario rates of return

Portfolio return

r

D

(i)

r

E

(i)

0.4*r

D

(i)+0.6r

E

(i)

0.14


0.36

0.30


0.20

Mean


SD

Covariance

Correlation

-

0.10



0.00

0.10


0.32

0.08


0.1359

-

0.0034



-

0.0847


-

0.35


0.20

0.45


-

0.19


0.12

0.2918


SD:

-

0.25



0.12

0.31


0.014

0.1040


0.1788

0.1788


1

2

3



4

Probability

Scenario

Spreadsheet 7B.6

Scenario analysis for bonds and stocks



e

X

c e l

Please visit us at 



  www.mhhe.com/bkm  

  Suppose that one of the assets, say,  E,  is replaced with a money market instrument, 

that is, a risk-free asset. The variance of  E  is then zero, as is the covariance with  D.  In that 

case, as seen from Equation 7B.15, the portfolio standard deviation is just  w  

 D 

  s  


 D 

 . In other 

words, when we mix a risky portfolio with the risk-free asset, portfolio standard deviation 

equals the risky asset’s standard deviation times the weight invested in that asset. This 

result  was  used  extensively  in  Chapter  6.                     

bod61671_ch07_205-255.indd   255

bod61671_ch07_205-255.indd   255

6/18/13   8:12 PM

6/18/13   8:12 PM

Final PDF to printer





Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   363   364   365   366   367   368   369   370   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish