Investments, tenth edition



Download 14,37 Mb.
Pdf ko'rish
bet341/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   337   338   339   340   341   342   343   344   ...   1152
Bog'liq
investment????

7.4 

 

 

  The Power of Diversification 

 Section 7.1 introduced the concept of diversification and the limits to the benefits of diver-

sification resulting from systematic risk. Given the tools we have developed, we can recon-

sider this intuition more rigorously and at the same time sharpen our insight regarding the 

power of diversification. 

bod61671_ch07_205-255.indd   226

bod61671_ch07_205-255.indd   226

6/18/13   8:11 PM

6/18/13   8:11 PM

Final PDF to printer




  C H A P T E R  

7

  Optimal Risky Portfolios 



227

 Recall from Equation 7.16, restated here, that the general formula for the variance of a 

portfolio  is   

 

s



p

2

5 a



n

i

51

a



n

j

51

w



i

w

j

 Cov(r



i

r



j

 (7.16)  



Consider now the naive diversification strategy in which an  equally weighted  portfolio is 

constructed, meaning that  w  

 i 

   5  1/ n  for each security. In this case Equation 7.16 may be 

rewritten as follows, where we break out the terms for which  i   5   j  into a separate sum, 

noting that Cov(r



i

r



i

)   


5 s

i

2

:    



 

s

p

2

5

1



a

n

i

51

1



n

 

s



i

2

1 a



n

j

51

j

2i

a

n



i

51

 



1

n

2

 Cov(r



i

r



j

 (7.17)  



Note that there are  n  variance terms and  n ( n   2  1) covariance terms in Equation 7.17. 

 If we define the average variance and average covariance of the securities as   

 

s

2



5

1

a



n

i

51

s



i

2

 



 (7.18)     

 Cov


5

1

n(n

2 1) a

n

j

51

j

2i

a

n



i

51

 Cov(r



i

r



j

 (7.19)  



we can express portfolio variance as   

 

s



p

2

5



1

n

 

s



2

1

n

2 1

n

 

Cov 



 (7.20)   

 Now examine the effect of diversification. When the average covariance among security 

returns is zero, as it is when all risk is firm-specific, portfolio variance can be driven to zero. 

We see this from Equation 7.20. The second term on the right-hand side will be zero in this 

scenario, while the first term approaches zero as  n  becomes larger. Hence when security 

returns are uncorrelated, the power of diversification to reduce portfolio risk is unlimited. 

 However, the more important case is the one in which economywide risk factors impart 

positive correlation among stock returns. In this case, as the portfolio becomes more highly 

diversified ( n  increases), portfolio variance remains positive. Although firm-specific risk, 

represented by the first term in Equation 7.20, is still diversified away, the second term 

simply  approaches     Cov  as  n  becomes greater. [Note that ( n     2   1)/ n     5   1    2   1/ n,   which 

approaches 1 for large  n. ] Thus the irreducible risk of a diversified portfolio depends on 

the covariance of the returns of the component securities, which in turn is a function of the 

importance of systematic factors in the economy. 

 To see further the fundamental relationship between systematic risk and security corre-

lations, suppose for simplicity that all securities have a common standard deviation,  s ,  and 

all security pairs have a common correlation coefficient,  r . Then the covariance between 

all pairs of securities is  r  s  

2

 , and Equation 7.20 becomes   



 

s

p

2

5

1



n

 

s



2

1

n

2 1

n

 

rs



2

 

 (7.21)   



 The effect of correlation is now explicit. When  r   5  0, we again obtain the insurance 

principle, where portfolio variance approaches zero as  n  becomes greater. For  r  . 0, how-

ever, portfolio variance remains positive. In fact, for  r   5  1, portfolio variance equals  s  

2

  



regardless of  n,  demonstrating that diversification is of no benefit: In the case of perfect 

bod61671_ch07_205-255.indd   227

bod61671_ch07_205-255.indd   227

6/18/13   8:11 PM

6/18/13   8:11 PM

Final PDF to printer




228

P A R T   I I

  Portfolio Theory and Practice

correlation, all risk is systematic. More generally, as  n  becomes greater, Equation 7.21 

shows that systematic risk becomes  r  s  

2

 . 



  Table 7.4  presents portfolio standard deviation as we include ever-greater numbers of 

securities in the portfolio for two cases,  r   5  0 and  r   5  .40. The table takes  s  to be 50%. As 

one would expect, portfolio risk is greater when  r   5  .40. More surprising, perhaps, is that 

portfolio risk diminishes far less rapidly as  n  increases in the positive correlation case. The 

correlation among security returns limits the power of diversification.  

 Note that for a 100-security portfolio, the standard deviation is 5% in the uncorrelated 

case—still significant compared to the potential of zero standard deviation. For  r   5  .40, 

the standard deviation is high, 31.86%, yet it is very close to undiversifiable systematic 

risk in the infinite-sized security universe,    

"rs


2

5 ".4 3 50

2

5 31.62%.  At this point, 



further diversification is of little value. 

 Perhaps the most important insight from the exercise is this: When we hold diversified 

portfolios, the contribution to portfolio risk of a particular security will depend on the 

 covariance  of that security’s return with those of other securities, and  not  on the security’s 

variance. As we shall see in Chapter 9, this implies that fair risk premiums also should 

depend on covariances rather than total variability of returns.   




Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   337   338   339   340   341   342   343   344   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish