Investments, tenth edition



Download 14,37 Mb.
Pdf ko'rish
bet237/1152
Sana18.07.2021
Hajmi14,37 Mb.
#122619
1   ...   233   234   235   236   237   238   239   240   ...   1152
Bog'liq
investment????

  Continuous Compounding 

 It is evident from  Table 5.1  (and Equation 5.8) that the difference between APR and EAR 

grows with the frequency of compounding. This raises the question: How far will these 

bod61671_ch05_117-167.indd   123

bod61671_ch05_117-167.indd   123

6/18/13   8:03 PM

6/18/13   8:03 PM

Final PDF to printer




124

P A R T   I I

  Portfolio Theory and Practice

two rates diverge as the compounding frequency continues to grow? Put differently, what 

is the limit of [1  1   T   3  APR] 

1/  T 

 , as  T  gets ever smaller? As  T  approaches zero, we effec-

tively approach  continuous compounding (CC),  and the relation of EAR to the annual 

percentage rate, denoted by  r  

 cc 

  for the continuously compounded case, is given by the 

exponential function

    

1 1 EAR 5 exp(r



cc

) 5 e



r

cc

 

 (5.9)   



 where   e  is approximately 2.71828. 

 To find  r  

 cc 

  from the effective annual rate, we solve Equation 5.9 for  r  

 cc 

  as follows:

ln(1 1 EAR) 5 r

cc

     


 where ln(•) is the natural logarithm function, the inverse of exp(•). Both the exponen-

tial and logarithmic functions are available in Excel, and are called EXP(•) and LN(•), 

respectively. 

 

 The continuously compounded annual percentage rate,  r  



 cc 

 , that provides an EAR of 5.8% 

is 5.638% (see  Table 5.1 ). This is virtually the same as the APR for daily compounding. 

But for less frequent compounding, for example, semiannually, the APR necessary to 

provide the same EAR is noticeably higher, 5.718%. With less frequent compounding, a 

higher APR is necessary to provide an equivalent effective return. 



 Example  5.5 

Continuously Compounded Rates 

 While continuous compounding may at first seem to be a mathematical nuisance, work-

ing with such rates can actually simplify calculations of expected return and risk. For 

example, given a continuously compounded rate, the total return for any period  T,   r  

 cc 

 ( T ),  is 

simply exp( T   3   r  

 cc 

 ).  


6

   In other words, the total return scales up in direct proportion to the 

time period,  T.  This is far simpler than working with the exponents that arise using discrete 

6

 This follows from Equation 5.9. If    1 1 EAR 5 e



r

cc

,   then     (1 1 EAR)



T

e



r

cc

T

.  



Download 14,37 Mb.

Do'stlaringiz bilan baham:
1   ...   233   234   235   236   237   238   239   240   ...   1152




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish