International Journal of Civil Engineering and Technology (ijciet)



Download 156,77 Kb.
Pdf ko'rish
bet5/5
Sana13.07.2022
Hajmi156,77 Kb.
#789233
1   2   3   4   5
Bog'liq
15-amaliy mash\'gulot

4. CONCLUSIONS 
This paper aims to describe and define the concept of artificial neural networks along with big 
data analytics in order to predict accuracy of data. Big data analytics is promising right 
direction for predicting the accuracy of huge assortment of data. As there is an increase in 
demand of big data analytics in which the information is been collected from different sources 
which to overcome the uncertainty of data in prediction. The predictive analysis of data is 
done by selection, sampling in dataset format and then modeling the data for refine the 
information. This paper provides with a concept of large volume of data which is to collected 
from different sources and been loaded in the form of data sets. The data set which is further 
classified into trained data set and evaluation data set which loaded in the form of CSV 
format. There after it is loaded into matrix which is to be processed in order to find the 
accuracy of data. There exists huge volume of data which can produce uncertainty in the 
results which leads inaccuracy. The huge assortment of data is considered in the form of data 
set is represented as plain text which leads to multiple rows that can extend to millions, thus 
which become congestion for processing the data efficiently. By using the concept of paper 


Ch. Mamatha, P. Buddha Reddy, M.A. Ranjit Kumar and Shrawan Kumar
http://iaeme.com/Home/journal/IJCIET
215 
editor@iaeme.com 
we set threshold limit in order to process the accurate results the prediction should not extend 
beyond the origin which results in accurate prediction.
REFERENCES 
[1]
Microsoft. The big bang: How the big data explosion is changing the world. 
[2]
EMC Corporation IDC IView. Extracting value from chaos. 
[3]
Intel. Big data 101: Unstructured data analytics. 
[4]
Jeffrey Dean et al. Large scale distributed deep networks. In Advances in Neural 
Information Processing Systems 2012. 
[5]
Kai Yu. Large-scale deep learning at baidu. In International Conference on Information 
and Knowledge Management 2013. 
[6]
Jiquan Ngiam et al. On optimization methods for deep learning. In International 
Conference on Machine Learning 2011. 
[7]
Adam Coates et al. Deep learning with cots hpc systems. In International Conference on 
Machine Learning 2013. 
[8]
DARPA. Power efficiency revolution for embedded computing technologies. 
[9]
NVIDIA TESLA K-SERIES DATASHEET. Kepler family product overview, 2012. 
[10]
Intel. Intel microprocessor export compliance metrics, 2013. 
[11]
Ilya Sutskever et al. Generating text with recurrent neural networks. In International 
Conference on Machine Learning 2011. 
[12]
Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualizing and understanding recurrent 
networks. International Conference on Learning Representations 2016, pages 1–13, 2015. 
[13]
Jeffrey L Elman. Finding Structure in Time. Cognitive science, 14(2):179–211, 1990. 
[14]
Kyunghyun Cho, Bart van Merrienboer, Dzmitry Bahdanau, and Yoshua Bengio. On the 
properties of neural machine translation: encoder–decoder approaches. In Proceedings of 
SSST-8, Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation, 
pages 103–111, 2014. 
[15]
Dr. V.V.R. Maheswara Rao, Dr. V. Valli Kumari and N. Silpa. An Extensive Study on 
Leading Research Paths on Big Data Techniques & Technologies. International Journal of 
Computer Engineering and Technology, 6 (1 2 ), 2015, pp. 20 - 34 .
[16]
Dr. M Nagalakshmi, Dr. I Surya Prabha, K Anil, Big Data Map Reducing Technique 
Based Apriori in Distributed Mining. International Journal of Advanced Research in 
Engineering and Technology, 8(5), 2017, pp 1 9 – 28 . 
[17]
Suja Cherukullapurath Mana, Big Data Paradigm and a Survey of Big Data Schedulers. 
International Journal of Computer Engineering & Technology , 8 (5 ), 2017, pp. 1 1 – 14
[18]
Dr. Md. Tabrez Quasim and Mohammad. Meraj, Big Data Security and Privacy: A Short 
Review, International Journal of Mechanical Engineering and Technology, 8(4), 2017, pp. 
408-412.
[19]
Getaneh Berie Tarekegn and Yirga Yayeh Munaye, Big Data: Security Issues, Challenges 
and Future Scope, International Journal of Computer Engineering and Technology, 7(4), 
2016, pp. 12–24.
[20]
K. Prema and Dr. A.V. Sriharsha, Differential Privacy in Big Data Analytics for Haptic 
Applications. International Journal of Computer Engineering & Technology, 8(3), 2017, 
pp. 11–19.
[21]
Patrick Mbassegue, Ma - Lorena Escandon - Quintanilla, Mickaël Gardoni , Knowledge 
Management and Big Data: Opportunities and Challenges for Small and Medium 
Enterprises (SME), International Journal of Industrial Engineering Research and 
Development, 8 ( 2 ), 201 7 , pp. 0 5 – 14 . 

Download 156,77 Kb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish