Integration By Parts



Download 2,82 Mb.
bet4/5
Sana28.06.2022
Hajmi2,82 Mb.
#715932
1   2   3   4   5
Bog'liq
Durdon

Solution
So, unlike any of the other integral we’ve done to this point there is only a single function in the integral and no polynomial sitting in front of the logarithm.
The first choice of many people here is to try and fit this into the pattern from above and make the following choices for u and dv.


This leads to a real problem however since that means v must be,

In other words, we would need to know the answer ahead of time in order to actually do the problem. So, this choice simply won’t work.


Therefore, if the logarithm doesn’t belong in the dv it must belong instead in the u. So, let’s use the following choices instead

The integral is then,

Example 5. Evaluate the following integral.

So, if we again try to use the pattern from the first few examples for this integral our choices for u and dv would probably be the following.

However, as with the previous example this won’t work since we can’t easily compute v.

This is not an easy integral to do. However, notice that if we had an x2 in the integral along with the root we could very easily do the integral with a substitution. Also notice that we do have a lot of x’s floating around in the original integral. So instead of putting all the x’s (outside of the root) in the u let’s split them up as follows.

We can now easily compute v and after using integration by parts we get,


So, in the previous two examples we saw cases that didn’t quite fit into any perceived pattern that we might have gotten from the first couple of examples. This is always something that we need to be on the lookout for with integration by parts.
Plan:

  1. Integration By Parts

  2. Integration By Parts, Definite Integrals

  3. Practice problems



Download 2,82 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish