Fundamental Theorem of Calculus:
'
x
a
d
F
x
f t dt
f x
dx
where
f t
is a continuous function on [a, x].
b
a
f x dx
F b
F a ,
where F(x) is any antiderivative of f(x).
Riemann Sums:
1
1
n
n
i
i
i
i
ca
c
a
1
1
1
n
n
n
i
i
i
i
i
i
i
a
b
a
b
1
( )
lim
(
)
b
n
n
i
a
f x dx
f a i x
x
n
a
b
x
1
1
n
i
n
1
(
1)
2
n
i
n n
i
2
1
(
1)(2
1)
6
n
i
n n
n
i
2
3
1
(
1)
2
n
i
n n
i
height of th rectangle
width of th rectangle
i
i
i
Right Endpoint Rule:
n
i
n
a
b
n
a
b
n
i
i
a
f
x
x
i
a
f
1
)
(
)
(
1
)
(
)
(
)
(
)
(
Left Endpoint Rule:
(
)
(
)
1
1
(
(
1)
)(
)
(
) (
(
1)
)
n
n
b a
b a
n
n
i
i
f a
i
x
x
f a
i
Midpoint Rule:
(
1)
(
)
(
1)
(
)
2
2
1
1
(
)(
)
(
) (
)
n
n
i
i
b a
i
i
b a
n
n
i
i
f a
x
x
f a
Net Change:
Displacement:
( )
b
a
v x dx
Distance Traveled:
( )
b
a
v x dx
0
( )
(0)
( )
t
s t
s
v x dx
0
( )
(0)
( )
t
Q t
Q
Q x dx
Trig Formulas:
2
1
2
sin ( )
1 cos(2 )
x
x
sin
tan
cos
x
x
x
1
sec
cos
x
x
cos(
)
cos( )
x
x
2
2
sin ( ) cos ( )
1
x
x
2
1
2
cos ( )
1 cos(2 )
x
x
cos
cot
sin
x
x
x
1
csc
sin
x
x
sin(
)
sin( )
x
x
2
2
tan ( ) 1 sec ( )
x
x
Geometry Fomulas:
Area of a Square:
2
A
s
Area of a Triangle:
1
2
A
bh
Area of an
Equilateral Trangle:
2
3
4
A
s
Area of a Circle:
2
A
r
Area of a
Rectangle:
A
bh
Areas and Volumes:
Area in terms of x (vertical rectangles):
(
)
b
a
top bottom dx
Area in terms of y (horizontal rectangles):
(
)
d
c
right
left dy
General Volumes by Slicing:
Given: Base and shape of Cross‐sections
( )
b
a
V
A x dx
if slices are vertical
( )
d
c
V
A y dy
if slices are horizontal
Disk Method:
For volumes of revolution laying on the axis with
slices perpendicular to the axis
2
( )
b
a
V
R x
dx
if slices are vertical
2
( )
d
c
V
R y
dy
if slices are horizontal
Washer Method:
For volumes of revolution not laying on the axis with
slices perpendicular to the axis
2
2
( )
( )
b
a
V
R x
r x
dx
if slices are vertical
2
2
( )
( )
d
c
V
R y
r y
dy
if slices are horizontal
Shell Method:
For volumes of revolution with slices parallel to the
axis
2
b
a
V
rhdx
if slices are vertical
2
d
c
V
rhdy
if slices are horizontal
Physical Applications:
Physics Formulas
Associated Calculus Problems
Mass:
Mass = Density * Volume (for 3‐D objects)
Mass = Density * Area
(for 2‐D objects)
Mass = Density * Length (for 1‐D objects)
Mass of a one‐dimensional object with variable linear
density:
(
)
( )
b
b
distance
a
a
Mass
linear density
dx
x dx
Work:
Work = Force * Distance
Work = Mass * Gravity * Distance
Work = Volume * Density * Gravity * Distance
Work to stretch or compress a spring (force varies):
'
(
)
( )
b
b
b
Hooke s Law
a
a
a
for springs
Work
force dx
F x dx
kx
dx
Work to lift liquid:
(
)(
)(
) (
)
9.8* * ( ) * (
)
(
)
d
c
volume
d
c
Work
gravity density distance area of a slice dy
W
A y
a
y dy
in metric
Force/Pressure:
Force = Pressure * Area
Pressure = Density * Gravity * Depth
Force of water pressure on a vertical surface:
(
)(
)(
) (
)
9.8* * (
) * ( )
(
)
d
c
area
d
c
Force
gravity density depth width dy
F
a
y
w y dy
in metric
Integration by Parts:
Knowing which function to call u and which to call dv takes some practice. Here is a general guide:
u
Inverse Trig Function
(
1
sin
, arccos ,
x
x
etc
)
Logarithmic Functions
(
log 3 , ln(
1),
x
x
etc
)
Algebraic Functions
(
3
,
5,1 / ,
x x
x
etc
)
Trig Functions
(
sin(5 ), tan( ),
x
x
etc
)
dv
Exponential Functions
(
3
3
, 5 ,
x
x
e
etc
)
Functions that appear at the top of the list are more like to be u, functions at the bottom of the list are more like to be dv.
Trig Integrals:
Integrals involving sin(x) and cos(x):
Integrals involving sec(x) and tan(x):
1. If the power of the sine is odd and positive:
Goal:
cos
u
x
i. Save a
sin( )
du
x dx
ii. Convert the remaining factors to
cos( )
x
(using
2
2
sin
1 cos
x
x
.)
1. If the power of
sec( )
x
is even and positive:
Goal:
tan
u
x
i. Save a
2
sec ( )
du
x dx
ii. Convert the remaining factors to
tan( )
x
(using
2
2
sec
1
tan
x
x
.)
2. If the power of the cosine is odd and positive:
Goal:
sin
u
x
i. Save a
cos( )
du
x dx
ii. Convert the remaining factors to
sin( )
x
(using
2
2
cos
1 sin
x
x
.)
2. If the power of
tan( )
x
is odd and positive:
Goal:
sec( )
u
x
i. Save a
sec( ) tan( )
du
x
x dx
ii. Convert the remaining factors to
sec( )
x
(using
2
2
sec
1
tan
x
x
.)
3. If both sin( )
x
and cos( )
x
have even powers:
Use the half angle identities:
i.
2
1
2
sin ( )
1 cos(2 )
x
x
ii.
2
1
2
cos ( )
1 cos(2 )
x
x
If there are no sec(x) factors and the power of
tan(x) is even and positive, use
2
2
sec
1
tan
x
x
to convert one
2
tan x
to
2
sec x
Rules for sec(x) and tan(x) also work for csc(x) and
cot(x) with appropriate negative signs
If nothing else works, convert everything to sines and cosines.
Trig Substitution:
Expression
Substitution
Domain
Simplification
2
2
a
u
sin
u
a
2
2
2
2
cos
a
u
a
2
2
a
u
tan
u
a
2
2
2
2
sec
a
u
a
2
2
u
a
sec
u
a
0
,
2
2
2
tan
u
a
a
Partial Fractions:
Linear factors:
Irreducible quadratic factors:
2
1
1
1
1
1
1
( )
...
(
)
(
)
(
)
(
)
(
)
m
m
m
P x
A
B
Y
Z
x r
x r
x r
x r
x r
2
2
2
2
2
1
2
1
1
1
1
1
( )
...
(
)
(
)
(
)
(
)
(
)
m
m
m
P x
Ax
B
Cx
D
Wx
X
Yx
Z
x
r
x
r
x
r
x
r
x
r
If the fraction has multiple factors in the denominator, we just add the decompositions.