In this thesis, we consider a linear second order ordinary differential equation (ode)



Download 37,03 Kb.
Sana30.06.2022
Hajmi37,03 Kb.
#720047
Bog'liq
Doc40

In this thesis, we consider a linear second order ordinary differential equation (ODE),



where is a continuous function, , and are given constants, and . We are interested to find a particular solution for Equ. (1).
Applications of Second Order Ordinary Differential Equations
The socond order ordinary differential equation (1) can model many different phenomena that we encounter every day. For example, the equation

represents what happens when an object is subject to a force towards an equilibrium position with the magnitude of the force being proportional to the distance from equilibrium. The above equation can be considered as an approximation to the equation of motion of a particular point on the basilar membrane, or anywhere else along the chain of transmission between the outside air and the cochles [10]. Thus the solution of the differential equation can help explain the perception of pitch and intensity of musical instruments by human ears.
We may also use a second order ODE to model at what sltitude a skydiver's parachute must open before he reaches the ground so that he lands safely. To model this phenomenon, we let denote the altitude of the skydiver. We consider Newton's second law

where represents the force, represents the mass of the skydiver and represents the acceleration. We assume that the only forces acting on the skydiver are air resistance and gravity when the skydiver falls through the air toward the earth. We also assume that the air resistance is proportional to the speed of the skydiver with being the positive constant of proportionslity known as the damping constant. The Newton's second law (2) then translates to

If we know the initial height and velocity at the time of jump, we have an initial value problem which is the equation (3) together with the initial conditions,

Download 37,03 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2025
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish