Ikki karrali integrallar (ularni hisoblash usullari)



Download 80,21 Kb.
Sana22.01.2022
Hajmi80,21 Kb.
#398797
Bog'liq
Ikki karrali integrallar va ularning xossalari


Ikki karrali integrallar (ularni hisoblash usullari)

Misol. Ushbu



integralni hisoblaymiz.

Integral ostidagi

funksiya (P)=[0,1;0,1] sohada uzluksiz. Berilgan ikki karrali integral ham, va



Integral ham mavjud. Yuqorida keltirilgan teoremaga ko’ra,



integral mavjud bo’ladi



formula bo’yicha berilgan integralni quyidagicha yozib olamiz:



,

bu yerda avval ichki integralni hisoblasak,





shuning uchun





Shunday qilib,



2. Egri chiziqli soha bo’lgan holda ikki karrali integralni takroriy integralga keltirish. (P) soha, quyidan va yuqoridan ikkita



uzluksiz chiziqlar bilan, yon tomondan – ikkita va ordinatalar bilan chegaralangan bo’lsin ( 1-rasm)



1-rasm

Quyidagi teorema o’rinli.

T e o r e m a. Agar (P) sohada aniqlangan funksiya uchun,



ikki karrali integral va x ning dagi har bir o’zgarmas qiymatida



oddiy integral mavjud bo’lsa, u holda



takroriy integral ham mavjud bo’ladi va ushbu



tenglik bajariladi.

Bu teorema 1-punktda keltirilgan holga keltirish bilan isbotlanadi.

Agar (P) soha boshqa ko’rinishdagi egri chiziqli trapetsiyadan iborat va



chiziqlar va to’g’ri chiziqlar bilan chegaralangan bo’lsa, u holda (6) ning o’rniga



,

bunda ikki karrali integral bilan birgalikda, da x bo’yicha oddiy integral mavjud deb faraz qilinadi.

E s l a t m a. Agar (P) soha konturi ordinatalar o’qiga parallellar kabi, abtsissalar o’qiga parallellar bilan ikkita nuqtada kesishsin. U holda

tenglik hosil bo’ladi. Bu – 1-p.dagi (5) formulaga o’xshash formuladir.



2-rasm

Agar funksiya (P) sohada uzluksiz bo’lsa, u holda ikki karrali va oddiy integrallar mavjud, va (6) yoki (6’) formulani, (P) sohaning turiga qarab, ikki karrali integralni hisoblashga qo’llash mumkin.

(P) soha murakkab kontur bo’lgan holda uni chekli sondagi qismlarga yoyiladi. Masalan, (P) figurani to’g’ri chiziq uchta va qismlarga ajratsin ( 3- rasm). U holda izlangan integral bu qismlar bo’yicha olingan integrallarni yig’indisini ifodalaydi.

3-rasm 3. Ikki karrali integrallarni hisoblashga doir misollar.1) Quyidagi

ikki karrali integralni hisoblaymiz, bu yerda



Y e ch i sh. (4’) tenglikka asosan



bo’ladi, bu yerda o’ng tomondagi integrallarni hisoblasak,





.

Shunday qilib, berilgan integralning qiymati:



2) bo’lsin. U holda



ikki karrali integralni hisoblaymiz.

Y e ch i sh. (4) ga asosan

bu yerda


bo’lgani uchun,





Demak,


3) Quyidagi



integralni qaraymiz, bu yerda (P) soha markazi koordinatalar boshida bo’lgan R radiusli doira( 4-rasm)

Y e ch i sh. (P) soha konturining tenglamasi: , bu yerdan Ravshanki, yuqori yarim aylananing tenglamasi, esa quyi yarim aylana tenglamasi bo’ladi. Demak, o’zgarmas da o’zgaruvchi dan + gacha o’zgaradi.
4-rasm

(6) formulaga ko’ra, integral ostidagi funksiya bo’yicha juft funksiya ekanini hisobga olib, quyidagini hosil qilamiz





Endi ichki integralni hisoblaymiz:



Keyin – juftlikni hisobga olib,



yoki


(6’) formula bo’yicha hisoblash, xuddi shunga o’xshash olib boriladi.

4) to’g’ri chiziqlar bilan hosil qilingan uchburchak soha bo’yicha ushbu

integralni hisoblaymiz.

Yechish. (6) formula bo’yicha

bo’lib, ichki integral quyidagiga teng bo’ladi





va nihoyat



(6’) formuladan ham foydalanib, hisoblashlarni bajarish mumkin edi, lekin bu holda nisbatan murakkab integrallarni hisoblashga to’g’ri keladi.





Download 80,21 Kb.

Do'stlaringiz bilan baham:




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish