Iii. Xulosa VI. Foydalanilgan adabiyotlar



Download 0,89 Mb.
bet6/12
Sana10.07.2022
Hajmi0,89 Mb.
#768220
1   2   3   4   5   6   7   8   9   ...   12
Bog'liq
To\'plamlar nazariyasi elementlari haqidagi asosiy tushunchalar.

8- teorema . U universal to ‘plamning ixtiyoriy A va В qism to‘plamlari uchun

tenglik о'rinlidir.

Isbot. A va В to'plamlar U universal to‘plamning ixtiyoriy qism to'plamlari bo'lsin. Teoremani isbotlashda 1- shakldan foydalanamiz. Shaklda U universal to'plam to'g'ri to'rtburchak ko'rinishda, A va В to'plamlar esa doiralar sifatida tasvirlangan. 1-a shakldagi U to'plamning bo'yalmagan qismi to'plamga, bo'yalgan qismi esa to'plamga mos keladi.
to'plamning ixtiyoriy elementini x bilan belgilaymiz. To'ldiruvchi to'plamning ta’rifiga ko'ra, va , y a’ni U to'plamning x elementi, bir vaqtning o'zida, ham A to'plamning, ham В to'plamning elementi bo'la olmaydi. Bu yerda uchta hol bor:
1) ( 1-b shakl); 2) ( 1-d shakl);
3) va (1-e shakl). _ _
1) holda , 2) holda , 3) holda esa va bo'ladi. Birlashmaning ta’rifiga ko'ra . ■
Endi to'plamning ixtiyoriy elementi x bo'lsin. Bu holda yoki . Bu natijadan yoki b o 'lishi kelib chiqadi. Shuning uchun va . Demak, .
9- t e o r e m a . U universal to'plamning ixtiyoriy A va В qism to‘plamlari uchun

tenglik о‘rinlidir.
Isbot. A va В to'plamlar U universal to'plamning ixtiyoriy qism to'plamlari bo'lsin.
to'plamning ixtiyoriy elementini x bilan belgilaymiz. x element 1-e shaklda to'g'ri to'rtburchakning bo'yalgan qismida yotadi. munosabatdan va bo'lishi kelib chiqadi. munosabat va birlashmaning ta’rifiga asosan, x clement A to'plam ga ham (1-b shaklga qarang), В to'plam ga ham (1-d shaklga qarang) tegishli emas, y a’ni , va . Bu yerdan
va munosabatlar o'rinliligini topamiz. Shunday qilib, kesishmaning te’rifiga asosan, .
Endi to'plamning ixtiyoriy elementi_x bo'lsin. Bu holda, kesishmaning ta’rifiga binoan, va bo'ladi. Bu yerdan, to'ldiruvchi to'plamning ta’rifiga ko'ra, va bo'lishini topamiz. Demak, qaralayotgan x element bir vaqtning o'zida A to'plam ga ham, В to'plam ga ham tegishli emas. Shuning uchun,
birlashmaning ta ’rifiga ko'ra, b o 'ladi. Shunday qilib, to'ldiruvchi to'plamning ta’rifiga asosan, . Yuqorida isbotlangan 8- va 9- teoremalardagi va tengliklar de Morgan qonunlari deb yuritiladi.

Download 0,89 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7   8   9   ...   12




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish