Иерархия памяти, КЭШ-память.
Память является важнейшим ресурсом любой вычислительной системы. Логически всю память ВС можно представить в виде последовательности ячеек, каждая из которых имеет свой номер, называемый адресом.Память вычислительной системы представляет собой иерархию запоминающих устройств (внутренние регистры процессора, различные типы сверхоперативной и оперативной памяти, диски, ленты), отличающихся объемом, средним временем доступа и стоимостью хранения данных в расчете на один бит.
Например:
" Регистровая память - емкость 64-256 слов, время доступа - 1такт процессора.
• КЭШ первого уровня или внутренний КЭШ - емкость 8k слов, время доступа -1-2 такта процессора.
• КЭШ второго уровня или внешний КЭШ - емкость 256k слов, время доступа - 3-5 тактов процессора.
• ОЗУ - емкость до 4Г слов, время доступа - 12-55 тактов процессора, " Внешняя память - емкость до 200Г, время доступа значительно ниже.
Таким образом, в основе иерархии памяти современных вычислительных систем лежит принцип «стоимость/производительность», т.е. с увеличением производительности возрастает и стоимость памяти, при этом пользователь всегда стремится иметь недорогую и быструю память. Кэш-память представляет некоторое решение этой проблемы.Кэш-память - это способ организации совместного функционирования двух типов ЗУ, отличающихся временем доступа и стоимостью хранения данных, который позволяет уменьшить среднее время доступа к данным за счет динамического копирования в «быстрое» ЗУ наиболее часто используемой информации из «медленного» ЗУ.
Кэш-памятью часто называют не только способ организации работы двух типов запоминающих устройств, но и одно из устройств - «быстрое» ЗУ. Оно стоит дороже и, как правило, имеет сравнительно небольшой объем. Важно, что механизм кэш-памяти является прозрачным для пользователя, который не должен сообщать никакой информации об интенсивности использования данных и не должен никак участвовать в перемещении данных из ЗУ одного типа в ЗУ другого типа, все это делается автоматически системными средствами.
В системах, оснащенных кэш-памятью, каждый запрос к «медленному» ЗУ выполняется в соответствии со следующим алгоритмом:
1. Просматривается содержимое кэш-памяти с целью определения, не находятся ли нужные данные в ней;
2. Если данные обнаруживаются в кэш-памяти, то они считываются из нее, и результат передается в процессор в более «быстрое» ЗУ
3. Если нужных данных нет, то они копируются из «медленного» ЗУ в кэш-память, и результат выполнения запроса передается в «быстрое» ЗУ. При копировании данных может оказаться, что в кэш-памяти нет свободного места, тогда выбираются данные, к которым в последний период было меньше всего обращений, для вытеснения из кэш-памяти. Если вытесняемые данные были модифицированы за время нахождения в кэш-памяти, то они переписываются в оперативную память. Если же эти данные не были модифицированы, то их место в кэш-памяти объявляется свободным.
На практике в кэш-память считывается не один элемент данных, к которому произошло обращение, а целый блок данных, это увеличивает вероятность так называемого «попадания в кэш», то есть нахождения нужных данных в кэш-памяти.
Принцип действия кэш-памяти основан на наличии у данных объективных свойств: пространственной и временной локальности.
Пространственная локальность состоит в следующем - если произошло обращение по некоторому адресу, то с высокой степенью вероятности в ближайшее время произойдет обращение к соседним адресам.
Временная локальность состоит в следующем - если произошло обращение по некоторому адресу, то следующее обращение по этому же адресу с большой вероятностью произойдет в ближайшее время.
3.2. Виртуальная память
Достаточно давно пользователи столкнулись с проблемой размещения в памяти программ, размер которых превышал имеющуюся в наличии свободную память. Решением было разбиение программы на части, называемые оверлеями. 0-ой оверлей начинал выполняться первым. Когда он заканчивал свое выполнение, он вызывал другой оверлей. Все оверлеи хранились на диске и перемещались между памятью и диском средствами операционной системы. Однако разбиение программы на части и планирование их загрузки в оперативную память должен был осуществлять программист.
Развитие методов организации вычислительного процесса в этом направлении привело к появлению метода, известного под названием виртуальная память. Виртуальным называется ресурс, который пользователю или пользовательской программе представляется обладающим свойствами, которыми он в действительности не обладает. Так, например, пользователю может быть предоставлена виртуальная оперативная память, размер которой превосходит всю имеющуюся в системе реальную оперативную память.
Таким образом, виртуальная память - это совокупность программно-аппаратных средств, позволяющих использовать ОП, размер которой превосходит реально имеющуюся в системе ОП. Для организации виртуальной памяти вычислительная система должна решать следующие задачи:
• размещение данных в ЗУ разного типа, например, часть ОП, а часть на диске;
• перемещение по мере необходимости данные между ЗУ разного типа, например, подгрузка нужной части программы с диска в ОП;
• преобразование виртуальных адресов в физические.
Все эти действия выполняются автоматически, без участия программиста, то есть механизм виртуальной памяти является прозрачным по отношению к пользователю.
3.3. Физическая организация памяти
Физически память делится на внутреннюю и внешнюю.
Внутренняя память выполняется, чаще всего, в виде микросхем высокой степени интеграции. Внутренняя или основная память может быть двух типов: оперативное запоминающее устройство (ОЗУ или RAM, Random Access Memory) или ЗУ с произвольной выборкой (ЗУПВ) и постоянное ЗУ (ПЗУ или ROM, Read Only Memory). В последнее время широкое распространение получила флэш (Р1азЬ)-память, имеющая особенности, как ОЗУ, так и ПЗУ. ОЗУ является энергозависимой памятью, поскольку вся содержащаяся в ней информация теряется при выключении питания и предназначена для временного хранения программ и данных. ПЗУ является энергонезависимой памятью, т.е. информация сохраняется и при выключении питания системы. ПЗУ предназначена для хранения управляющих работой ЭВМ стандартных программ (например, отвечающие за процедуру старта системы), констант, таблицы символов и т.д.
Конференции с публикацией в Scopus!conferences.science Заочные конференции с публикацией в журналах Scopus, WoS. Все дисциплины. Квартиль!ДистанционнаяПо всем дисциплинамНизкий взносРегистрация онлайнАдрес и телефон
|
Дистанционное образование в Россииrosdistant.ru Высшее образование дистанционно. Актуальные знания. Диплом государственного образца!О нас - РосдистантКак поступитьГос дипломДистанционное обучениеАдрес и телефон
|
гидроворонка (гидросмеситель)kosun.ru Устройство приготовления раствора, одноструйная и двухструйная гидроворонка.Перемешиватель раствораЁмкость бурового раствораГидромониторАдрес и телефон
|
Яндекс.Директ
ПЗУ могут быть: масочными - запрограммированными на заводе изготовителе (ROM), однократно-программируемыми пользователем ППЗУ (PROM или ОТР), многократно-программируемыми (репрограммируемыми) пользователем РПЗУ с ультрафиолетовым стиранием (EPROM) или с электрическим стиранием (EEPROM, Flash). Широкое распространение нашли также программируемые логические матрицы и устройства (PLM, PML, PLA, PAL, PLD, FPGA и т.д.) с большим выбором логических элементов и устройств на одном кристалле.
ОЗУ подразделяются на статическую память (SRAM), динамическую (DRAM, здесь для хранения информации необходима ее регенерация) и регистровую (RG).
В качестве оперативной памяти современные ЭВМ оснащаются модулями SIMM, DIMM, DDR и RIM, которые является динамической памятью. Указанные модули памяти представляют собой небольшие платы с установленными на ней совместимыми чипами SDRAM (Sychronous DRAM - это новая технология микросхем динамической памяти. Основное отличие данного типа памяти от остальных заключается в том, что все операции синхронизированы с тактовой частотой процессора, то есть память и CPU работают синхронно. Технология SDRAM позволяет сократить время, затрачиваемое на выполнение команд и передачу данных, за счет исключения циклов ожидания).
Модуль SIMM (Single In-line Memory Modyle) - 72-контактные модули, обычно оборудованные микросхемами памяти общей емкостью 8, 16 и 32 Мб.
Модуль DIMM (Dual In-line Memory Modyle) - 168-контактные модули памяти. DIMM обладают внутренней архитектурой, схожей с 72-контактными модулями SIMM, но благодаря более широкой шине обеспечивают повышенную производительность подсистемы «ЦП - ОП».
Модуль DDR - имею аналогичную DIMM архитектуру, а двукратный выигрыш в быстродействии осуществляется за возможности передачи двух порций данных за один такт синхронизации - по фронту и спаду импульса.
Одной из наиболее быстродействующих является память RDRAM (Rambus RAM), разработанная американской компанией Rambus. Память RDRAM является 16-разрядной, тактируется частотой 400 МГц (результирующая частота за счет использования технологии DDR составляет 800 МГц) и достигает пиковой скорости передачи данных 1.6 Гбайт/с. Использование узкой шины данных и сверхвысокой частоты значительно повышают эффективность использования и загрузку канала, максимально освобождая протокол от временных задержек.
3.4. Внешняя память
Внешней называют память на магнитных (жесткие и гибкие диски), оптических носителях (CD-ROM) и т.п.
Кроме того существует и накопители на магнитной ленте, которые в настоящее время практически не используются и поэтому в данной главе не рассматриваются.
Дисковые накопители в зависимости от среды носителя и по применяемому методу записи (чтения) данных на (с) поверхность (и) могут подразделяться на магнитные, оптические и магнитооптические.
Тип накопителя
|
Емкость, Мб
|
Время доступа, мс
|
Скорость передачи , Кбайт /с
|
Режим доступа
|
НГМД
|
1,2; 1,44
|
65 -100
|
|
Чтение/запись
|
НЖМД (Винчестер)
|
1000-18000
|
8-20
|
SOO-3000
|
Чтение/запись
|
CD-R
|
120-800
|
15-300
|
150-1500
|
Чтение/ однократная запись
|
CD-RW
|
120-800
|
15-150
|
150-1500
|
Чтение/Запись
|
НМОЦ
|
1.28-1300
|
15-150
|
300-2000
|
Ч те кие /запись
|
Do'stlaringiz bilan baham: |