ИДЗ-4. Классическое определение вероятности
Решите задачу на вычисление вероятности, основываясь на ее классическом определении.
Из множества всех последовательностей длины 10, состоящих из цифр 0; 1; 2; 3, наудачу выбирается одна. Какова вероятность того, что выбранная последовательность содержит ровно 5 нулей, причем два из них находятся на концах последовательности.
Решение: Вероятность события A – «Выбранная последовательность содержит ровно 5 нулей, причем два из них находятся на концах последовательности», согласно классическому определению, равна
P(A) = ,
где n – полное число равновероятных исходов; m – число исходов, благоприятствующих событию A.
Число способов заполнить 10 позиций в последовательности цифрами 0; 1; 2; 3 составляет, с учетом возможности повторения цифр,
n = 410 = 220 = 1048576.
Число способов разместить 5 нулей на 10 позициях в последовательности при условии, что нули обязательно находятся на первом и десятом месте в последовательности, равно числу способов разместить три нуля на восьми свободных позициях в последовательности и равно числу сочетаний из 8 элементов по 3: = = 56. Оставшиеся 8 – 3 = 5 позиций в последовательности будут заполнены цифрами 1; 2; 3. Число способов осуществить это, с учетом возможности повторения, равно 35 = 243. Т.о., число исходов, благоприятствующих событию A, равно
m = 35 = 56243 = 13608.
Искомая вероятность события A равна:
P(A) = = 0,013.
Ответ: P(A) = = 0,013.
Варианты индивидуальных домашних заданий (ИДЗ)
ИДЗ-1. Основные понятия теории множеств
Определить и изобразить на рисунках множества A, B, AB, AB, A/B, B/A, AB:
A = {(x, y) R2: x y}, B = {(x, y) R2: |x| + |y| 1};
A = {(x, y) R2: y –x}, B = {(x, y) R2: x2 + y2 1};
A = {(x, y) R2: y x2}, B = {(x, y) R2 : x2 + (y – 1)2 1};
A = {(x, y) R2: xy 0}, B = {(x ,y) R2: x2 + y2 1};
A = {(x, y) R2: y –x2}, B ={(x, y) R2: (x + 1)2 + (y + 1)2 1};
A = {(x, y) R2: xy 0}, B ={(x, y) R2: |x| + |y| 1};
A = {(x, y) R2: x y}, B = {(x, y) R2: 9x2 + y2 36};
A = {(x, y) R2: x y}, B ={(x, y) R2: 4x2 + 9y2 36};
A = {(x, y) R2: max{|x|, |y|} 1}, B = {(x, y) R2: x2 + y2 1};
A = {(x, y) R2: max{|x|, |y|} 2}, B= {(x, y) R2: y x + 1};
A = {(x, y) R2: y x2}, B = {(x, y) R2: y 4 – x2};
A = {(x, y) R2: x –y}, B = {(x, y) R2 : |x| + |y| 2};
A ={(x, y) R2: |x| + |y| 3}, B = {(x, y) R2: max{|x|, |y|} 2};
A = {(x, y) R2: y –x2}, B = {(x, y) R2: (x – 1)2 + (y + 1)2 1};
A = {(x, y) R2: xy 0}, B = {(x, y) R2: x2 + (y + 1)2 1};
A = {(x, y) R2: xy 0}, B = {(x, y) R2: x2 + y2 4};
A = {(x, y) R2: y x2}, B = {(x, y) R2: (x – 1)2 + (y + 1)2 4};
A = {(x, y) R2: x2 y}, B = {(x, y) R2: x2 + y2 4};
A = {(x, y) R2: xy 0}, B = {(x, y) R2: |x| + |y – 2| 1};
A = {(x, y) R2: x –y}, B = {(x, y) R2: (x – 2)2 + (y + 3)2 1};
A = {(x, y) R2: x y}, B = {(x, y) R2 : 9x2 + y2 9};
A = {(x, y) R2: x y}, B = {(x, y) R2: x2 + 4y2 4};
A = {(x, y) R2: |x| + |y| 2}, B = {(x, y) R2: 9x2 + y2 9};
A = {(x, y) R2: max{|x|, |y|} 2}, B = {(x, y) R2: x2 + 1 y};
A = {(x, y) R2: max{|x|, |y|} 2}, B = {(x, y) R2: 4 – x2 y};
A = {(x, y) R2: xy 1}, B = {(x, y) R2 : x2 + y2 9};
A = {(x, y) R2: x2 + y2 4}, B = {(x, y) R2: (x + 1)2 + (y + 1)2 4};
A = {(x, y) R2: |x| + |y| 4}, B = {(x, y) R2: x2 + y2 16};
A = {(x, y) R2: y (x – 2)2}, B = {(x, y) R2: x2 + y2 4};
A = {(x, y) R2: x + y 3}, B = {(x, y) R2: (x – 1)2 + (y – 1)2 9}.
ИДЗ-2. Законы алгебры множеств
Пусть A, B, C – подмножества некоторого универсального множества U. Установите справедливость нижеследующих утверждений.
1. (U\B)\(U\A) A\B; 2. (U\A)\B = U\(AB);
3. A\C (A\B)(B\C); 4. (AB)C = (AC)(BC);
5. Если A B, то U\B U\A; 6. AB = U\((U\A)(U\B));
7. AB = A(AB); 8. A\B = A(AB);
9. Если AB = A, то B = ; 10. (AB)C (AC)(BC);
11. (AB)(BC) = (ABC)\(ABC); 12. AB = (U\A)(U\B);
13. A(AB) = B; 14. (A\C)\(B\A) A\C;
15. (A\C)\(B\A) (A\B)(B\C); 16. (A\C) (A\B)(B\C);
17. Если U\B U\A, то A B; 18. A(BC) = (AB)(AC);
19. AB (AС)( BC); 20. A\(B\C) = (A\B)(AC);
21. (A\B)\C = (A\C)\(B\C); 22. (AB)\C = (A\C)(B\C);
23. Если C A, то A\(B\C) = (A\B)C; 24. (AB)\C = (A\C)(B\C);
25. (A\B)C = (AC)\B; 26. (A\B)C (AC)\B;
27. (AB)\C = (A\C)(B\C); 28. (A\B)\(A\C) = (AC)\(AB);
29. (AB)\C = (A\(BC))(B\(AC)); 30. (A\B)C = (AC)\(BC).
ИДЗ-3. Элементы комбинаторики
а) Вычислите значение X комбинаторного выражения;
б) Решите комбинаторную задачу;
в) Решите комбинаторную задачу повышенного уровня сложности.
1. а) X = – ;
б) На конференции должны выступить 7 докладчиков. Сколькими способами можно составить списки выступлений ораторов?
в) Сколькими способами можно выбрать из колоды в 36 карт пять карт так, чтобы среди них было не менее трех шестерок?
2. а) X = – ;
б) Сколько пятизначных телефонных номеров, в которых цифры не повторяются, можно составить из цифр 1, 2, 3, 4, 5, 6, 7, 8?
в) Имеются 5 путевок в Турцию и 7 – в Грецию. Сколькими способами можно отправить 9 туристов на отдых в Турцию или Грецию?
3. а) X = – ;
б) На книжной полке стоят 12 книг различных авторов. Сколькими способами можно взять с полки 7 книг?
в) Сколько различных трехбуквенных слов, в которых буквы не повторяются и есть только одна гласная буква, можно составить из букв а, б, в, г, е, ж?
4. а) X = – ;
б) Сколькими способами можно опустить 4 различных письма в 10 почтовых ящиков, если в каждый ящик опускают не более одного письма?
в) Сколькими способами можно переставить буквы в слове «высота» так, чтобы все согласные стояли рядом?
5. а) X = + 2 ;
б) Сколькими способами могут быть распределены 5 контрамарок (билетов без указания места) на спектакль среди 12 учеников класса?
в) Сколько различных четырехзначных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6 так, чтобы каждое из этих чисел начиналось и заканчивалось четной цифрой?
6. а) X = + 2P5;
б) Сколькими способами можно расположить на книжной полке 7 различных книг?
в) Сколькими способами можно выбрать из колоды в 36 карт четыре карты так, чтобы ровно три из них были одной масти?
7. а) X = + ;
б) У студента имеется 7 различных учебников. Сколькими способами можно выбрать 3 учебника?
в) Сколькими способами можно расставить на книжной полке 8 томов собрания сочинений так, чтобы первый, второй и третий тома стояли рядом?
8. а) X = 5 – ;
б) Сколько трехзначных чисел можно составить из цифр 0, 1, 2, 3, 4, 5, 6?
в) Сколькими способами можно выбрать из колоды в 36 карт пять карт так, чтобы среди них точно была одна шестерка и одна семерка, причем одной масти?
9. а) X = – ;
б) Сколькими способами можно усадить на скамейку 6 человек?
в) В спортивной секции занимаются 10 человек. Сколькими способами можно выбрать из них 5 человек, среди которых трое – участники эстафеты 100 + 400 + 500 и двое – запасных?
10. а) X = + ;
б) Сколькими способами можно выбрать из колоды в 36 карт две карты: одну масти «крести», другую – масти «черви»?
в) На школьной конференции от класса в 20 чел. должны участвовать 5 представителей; среди них – 2 докладчика: по математике и по истории. Сколькими способами можно составить команду участников?
Do'stlaringiz bilan baham: |