Identification of the dynamic characteristics of nonlinear structures



Download 7,99 Kb.
Pdf ko'rish
bet53/124
Sana24.03.2022
Hajmi7,99 Kb.
#507378
1   ...   49   50   51   52   53   54   55   56   ...   124
Bog'liq
Dynamic characteristics of non-linear system.

steady-state response. The 
steady-state response of
a system is what remains after the transient has decayed to zero and from what has been
taught in linear system theory, it can either be an equilibrium point, periodic or 
periodic solution. This basic principle of linear systems has been so deeply-rooted in the
mind of most engineers that they may subconsciously extrapolate it for nonlinear systems
as well. We know that for some nonlinear systems, there exist a wide range of parameters
for which the steady-state responses are bounded, but are 
periodic. In fact, the
response 
becomes erratic with a broad continuous frequency spectrum (rather
than discrete, as in the periodic case). Moreover, the response is so sensitive to initial
conditions that unless a computer with infinite word length is used in the simulation, no
long-term prediction of the precise waveform is possible.
For mechanical systems, the study of chaotic vibration is important for several reasons.
First, in the design of mechanical control systems, it is essential to avoid the occurrence
of chaotic oscillation at design stage because chaos means unpredictability and so
uncontrollability. Secondly, the random nature of the response to a deterministic (usually
periodic) excitation of a mechanical structure makes life prediction difficult and statistical
stress/fatigue analysis becomes necessary. Finally, from a machine monitoring point of
view, that a broad continuous response spectrum can be due a single sinusoidal input
makes the reliable diagnosis in most cases difficult and suggests that the development of
new techniques is required.
In the following section, the basic theory of chaotic vibration is introduced based the
well-known Duffing’s and van der Pol’s systems. Ingredients which are essential for
understanding chaos are presented.


4
Identification of Chaotic Vibrational Systems

Download 7,99 Kb.

Do'stlaringiz bilan baham:
1   ...   49   50   51   52   53   54   55   56   ...   124




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish