Identification of the dynamic characteristics of nonlinear structures


MODEL UPDATING USING FRF DATA A NEW



Download 7,99 Kb.
Pdf ko'rish
bet77/124
Sana24.03.2022
Hajmi7,99 Kb.
#507378
1   ...   73   74   75   76   77   78   79   80   ...   124
Bog'liq
Dynamic characteristics of non-linear system.

MODEL UPDATING USING FRF DATA A NEW
GENERALISED METHOD
6.4.1 DESCRIPTION OF THE METHOD
The development of the model updating method described here is based on the following
mathematical identity:
[[A] + [B]] 
[A] [[A] + [B]] [B] [A] 
(6-l)


6
Identification of Mathematical Model of Dynamic Structures
179
where [A] and 
are two complex matrices satisfying the condition that both [A] and
([A]+[B]) are nonsingular. To check the validity of equation 
premultiply both sides
of (6-l) by ([A]+[B]), since it is nonsingular, so that (6-l) becomes:
Now, if we assume that [A] is the impedance matrix of the analytical system [Z,(o)] and
that ([A]+[B]) is the impedance matrix of the experimental system 
then equation
1) becomes:

(6-3)
Rewriting (6-3) in its more familiar receptance and impedance error form, we have

=
(6-4)
where [AZ(o)] is the impedance error matrix defined as 
In
what follows, it will be shown how equation (6-4) can be used to solve the updating
problem uniquely when one complete column of the receptance matrix is measured and
how it can be extended to cases where the measured coordinates are incomplete.
In the case where one complete column (the 
has been measured, then (6-4) can be
rewritten in terms of measured and analytical receptance terms as
T
1
 
this formula being obtained by simply taking the 
row of both sides of equation (6-4).
In analytical model updating, the physical connectivity of the analytical model should
usually be respected and therefore the updated model should have the same physical
connectivity as that of the analytical model, i.e. the modelling errors can only occur where
the elements of mass or stiffness matrix are 
Further discussions on the necessity
and mathematical validity of preserving the physical connectivity of the analytical model
will be given in Chapter 7. Also, in general, the physical connectivity of the damping
matrix can be assumed to be the same as that of the stiffness. Upon substitution of
[AZ(o)] in (6-S) in terms of [AM], [AK] and 
and transpose, equation (6-5) becomes:




6 Identification of Mathematical Model of Dynamic Structures
180
Consider the physical connectivity of the analytical model and let the design variable
changes in the mass matrix be 
where 
is the total number of independent
design variables in mass matrix which could be individual 
elements, as in the
case of mass spring systems, or coefficients of element mass matrices as in finite element
models), in the stiffness matrix be Ak, (s=l, 
and in the damping matrix to be (s=l,
Then, it can be shown that every element 
where N is the number of
total degrees of freedom specified in the analytical model) of the RHS of 
which is a
vector, can be expressed as a linear combination of the changes of all design variables as:

Download 7,99 Kb.

Do'stlaringiz bilan baham:
1   ...   73   74   75   76   77   78   79   80   ...   124




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish