Запасы энергии и другие запасы энергии, образующиеся от подъема и опускания морской воды
Потребление энергии является обязательным условием существования человечества. Наличие доступной для потребления энергии всегда было необходимо для удовлетворения потребностей человека, увеличения продолжительности и улучшения условий его жизни.
История цивилизации – история изобретения все новых и новых методов преобразования энергии, освоения ее новых источников и в конечном итоге увеличения энергопотребления.
Первый скачок в росте энергопотребления произошел, когда человек научился добывать огонь и использовать его для приготовления пищи и обогрева своих жилищ. Источниками энергии в этот период служили дрова и мускульная сила человека. Следующий важный этап связан с изобретением колеса, созданием разнообразных орудий труда, развитием кузнечного производства. К XV веку средневековый человек, используя рабочий скот, энергию воды и ветра, дрова и небольшое количество угля, уже потреблял приблизительно в 10 раз больше, чем первобытный человек. Особенно заметное увеличение мирового потребления энергии произошло за последние 200 лет, прошедшие с начала индустриальной эпохи, – оно возросло в 30 раз и достигло в 1998 г. 13.7 Гигатонн условного топлива в год. Человек индустриального общества потребляет в 100 раз больше энергии, чем первобытный человек.
В современном мире энергетика является основой развития базовых отраслей промышленности, определяющих прогресс общественного производства. Во всех промышленно развитых странах темпы развития энергетики опережали темпы развития других отраслей.
В то же время энергетика – один из источников неблагоприятного воздействия на окружающую среду и человека. Она влияет на атмосферу (потребление кислорода, выбросы газов, влаги и твердых частиц), гидросферу (потребление воды, создание искусственных водохранилищ, сбросы загрязненных и нагретых вод, жидких отходов) и на литосферу (потребление ископаемых топлив, изменение ландшафта, выбросы токсичных веществ).
Несмотря на отмеченные факторы отрицательного воздействия энергетики на окружающую среду, рост потребления энергии не вызывал особой тревоги у широкой общественности. Так продолжалось до середины 70-х годов, когда в руках специалистов оказались многочисленные данные, свидетельствующие о сильном антропогенном давлении на климатическую систему, что таит угрозу глобальной катастрофы при неконтролируемом росте энергопотребления. С тех пор ни одна другая научная проблема не привлекает такого пристального внимания, как проблема настоящих, а в особенности предстоящих изменений климата.
Считается, что одной из главных причин этого изменения является энергетика. Под энергетикой при этом понимается любая область человеческой деятельности, связанная с производством и потреблением энергии. Значительная часть энергетики обеспечивается потреблением энергии, освобождающейся при сжигании органического ископаемого топлива (нефти, угля и газа), что, в свою очередь, приводит к выбросу в атмосферу огромного количества загрязняющих веществ.
Такой упрощенный подход уже наносит реальный вред мировой экономике и может нанести смертельный удар по экономике тех стран, которые еще не достигли необходимого для завершения индустриальной стадии развития уровня потребления энергии, в том числе России. В действительности все обстоит гораздо сложнее. Помимо парникового эффекта, ответственность за который, частично лежит на энергетике, на климат планеты оказывает влияние ряд естественных причин, к числу важнейших из которых относятся солнечная активность, вулканическая деятельность, параметры орбиты Земли, автоколебания в системе атмосфера-океан. Корректный анализ проблемы возможен лишь с учетом всех факторов, при этом, разумеется, необходимо внести ясность в вопрос, как будет вести себя мировое энергопотребление в ближайшем будущем, действительно ли человечеству следует установить жесткие самоограничения в потреблении энергии с тем, чтобы избежать катастрофы глобального потепления.
Современные тенденции развития энергетики
Рис. 5.37. Мировое потребление коммерческой энергии Е и численность населения Р во второй половине XX столетия
| Общепринятая классификация подразделяет источники первичной энергии на коммерческие и некоммерческие.
Коммерческие источники энергии включают в себя твердые (каменный и бурый уголь, торф, горючие сланцы, битуминозные пески), жидкие (нефть и газовый конденсат), газообразные (природный газ) виды топлива и первичное электричество (электроэнергия, произведенная на ядерных, гидро-, ветровых, геотермальных, солнечных, приливных и волновых станциях).
К некоммерческим относят все остальные источники энергии (дрова, сельскохозяйственные и промышленные отходы, мускульная сила рабочего скота и собственно человека).
Мировая энергетика в целом на протяжении всей индустриальной фазы развития общества основана преимущественно на коммерческих энергоресурсах (около 90% общего потребления энергии). Хотя следует отметить, что существует целая группа стран (экваториальная зона Африки, Юго-Восточная Азия), многочисленное население которых поддерживает свое существование почти исключительно за счет некоммерческих источников энергии.
Различного рода прогнозы потребления энергии, базирующиеся на данных за последние 50-60 лет предполагают, что примерно до 2025 г. ожидается сохранение современного умеренного темпа роста мирового потребления энергии – около 1.5% в год и проявившая себя в последние 20 лет стабилизация мирового душевого потребления на уровне 2.3-2.4 т усл.топл./(чел.-год). После 2030 г. по прогнозу начнется медленное снижение среднемирового уровня душевого потребления энергии к 2100 г. При этом общее потребление энергии обнаруживает явную тенденцию к стабилизации после 2050 г. и даже слабого уменьшения к концу века.
ИСТОРИЧЕСКОЕ РАЗВИТИЕ ТЕРМОДИНАМИКИ
Технические приложения составляют важнейшую составную часть современной термодинамики эту часть термодинамики ввиду большого значения выделяют обычно в самостоятельный раздел и называют технической термодинамикой. Современная техническая термодинамика является основой теории тепловых двигателей, тепловых машин и различных устройств и технологических процессов, в которых используется теплота или, точнее, осуществляются превращения внутренней энергии тел в теплоту и работу. Напомним, что само возникновение термодинамики было вызвано нуждами практической теплотехники. Таким образом, термодинамика с самого начала своего становления была органически связана с практикой. Эта связь сохранялась и укреплялась на всех этапах исторического развития термодинамики, что и сделало ее в широком смысле научной базой современной энергетики. [c.513]
Следует отметить, что само возникновение термодинамики было вызвано нуждами практической теплотехники. Связь с практикой сохранялась и укреплялась на всех этапах исторического развития термодинамики, что обусловило ее роль научной базы современной энергетики. [c.502]
Выполнив анализ хода исторического развития термодинамики, [c.142]
Историческое развитие термодинамики связано с именами выдающихся ученых. Закон сохранения энергии был сформулирован М. В. Ломоносовым и позволил получить первое начало термодинамики, создателями которого считаются Майер, Джоуль, Гельмгольц. Открытие второго начала термодинамики, указывающего направленность термодинамических процессов, связано с именами Карно, Клаузиуса, Томсона, Больцмана [c.6]
Анализ рабочих процессов различных преобразователей энергии, т. е. технические приложения термодинамики, составляет важную составную часть современной термодинамики эту часть ввиду большого значения выделяют обычно в самостоятельный раздел и называют технической термодинамикой. Современная техническая термодинамика является основой теории тепловых двигателей, тепловых машин и различных устройств и технологических процессов, в которых в качестве исходной энергии, претерпевающей превращения в рабочем процессе, используется теплота такое же основополагающее значение имеет техническая термодинамика для прямых преобразователей энергии, в которых внутренняя энергия тел или энергия полей превращается в энергию электрического тока. Напомним, что само возникновение термодинамики было вызвано нуждами практической теплотехники. Таким образом, термодинамика с самого начала своего становления была органически связана с практикой. Эта связь сохранялась и укреплялась на всех этапах исторического развития термодинамики, что и сделало ее научной базой современной энергетики. [c.137]
Один из простейших обратимых циклов теплового двигателя — цикл Карно. Анализ этого цикла имеет историческое значение в развитии термодинамики. Цикл Карно использует идеальный газ [c.197]
Каждая из приведенных выше формулировок второго начала ак-центрировала внимание на каких-либо определенных особенностях макроскопических процессов (понятно, что в качестве определяющих выбирались главнейшие особенности) и в историческом плане отвечала разным этапам развития термодинамики или физики вообще. Все эти формулировки представлялись вполне эквивалентными, пока в 50-х годах текущего столетия не были открыты состояния с отрицательными абсолютными температурами, существенно отличающиеся от обычных состояний, когда абсолютные температуры всегда положительны. [c.96]
Историческим толчком для развития термодинамики явилась инженерная практика постройки паровых машин, поставившая ряд новых, неизвестных ранее вопросов. Поэтому наука, занимавшаяся сопоставлением тепла и силы (работы), получила название термодинамики . Метод анализа в этом названии не отражается. [c.12]
В термодинамике показано, что приведенные четыре формулы определяют одну и ту же температуру, которая получила название термодинамической. Любой из коэффициентов R, к , а или Ь, используемых в формулах, можно было бы приравнять к единице. Это обеспечило бы разные размерности температуры как производной единицы. Однако историческое развитие науки и то исключительно важное место, которое занимает температура в современной физике и технике, сделали целесообразным выделение ее в ряд основных величин. В связи с введением лишней основной единицы возникает новая фундаментальная константа [c.21]
Рассматривая весь круг вопросов, связанных с исследованием термомеханических взаимодействий, мы сосредоточили внимание на существе задачи и не вдавались в анализ того исторического хода развития термодинамики, который привел к понятию энтропии, т. е, к возможности представления количества теплоты в форме выражения [c.127]
Другой положительной особенностью учебника Брандта является приведение в нем исторических данных по созданию и развитию термодинамики. Они даны в разделе, имеющем наименование Краткий очерк истории по термодинамике (16 страниц). Здесь имеются многие интересные сведения, весьма полезные для изучающих термодинамику. [c.190]
Говоря об исторических исследованиях, приходится высказать несколько критических замечаний об исторических очерках по термодинамике Брандта (1918) и Радцига (1936). Очерк Брандта является устаревшим в нем в основном и притом очень односторонне рассматриваются исторические данные лишь по некоторым вопросам термодинамики, относящиеся к XIX столетию. Очерк Радцига является очень кратким он не касается многих важных сторон истории термодинамики. Кроме того, в этих очерках не показаны труды и исследования русских ученых, даже имевшие большое значение в развитии термодинамики. Наряду с этим в них можно встретить сведения о самых второстепенных достижениях западных ученых. [c.275]
Этот избыток гидростатического давления и называют осмотическим давлением. Величина осмотического давления вполне может составлять несколько атмосфер, и мембрана должна выдерживать его при достижении равновесия. Осмотическое давление имеет важное значение для живых организмов, и исторически представление об осмотическом давлении сыграло большую роль в развитии термодинамики. В силу этих причин мы выбрали в качестве примера для этой главы термодинамическую теорию осмотического давления, предложенную Вант-Гоффом (1903). [c.138]
При прохождении любого из разделов теоретической физики исторические сведения не только интересны сами по себе, но и необходимы, так как они ориентируют читателя, так сказать, во временном аспекте данной науки, причем тут нужны не только даты. Значительно важнее и поучительнее было бы раскрыть психологию процесса открытия, общую обстановку, остроту дискуссий, характеры отдельных личностей и т. д. Но подобный высокий исторический уровень не вписывается в наши задачи, мы будем излагать наш материал не в его историческом развитии, где что-то запаздывает, что-то опережает, а что-то является вообще заблуждением, а в современном рациональном его построении последовательность в изложении основополагающих идей — это привилегия учебных пособий. Если же говорить об истории изучаемого предмета в целом, точнее, об общей ее хронологии (собственно история предмета будет раскрываться естественным образом по мере изложения материала), то необходимо заметить, что период становления термодинамики и статистической физики охватывает более столетия (для сравнения идеология и аппарат нерелятивистской квантовой механики были разработаны за срок в десять раз более короткий). Общая хронология этого процесса представлена на схеме [c.16]
Исторически К. ц. сыграл важную роль в развитии термодинамики и теплотехники. С его помощью была доказана эквивалентность формулировок К. Клаузиуса и У. Томсона (Кельвина) второго начала термодинамики , К. ц. был применён для определения абс. термодинамич. шкалы темп-р (см. Температурные шкалы)] часто использовался для вывода разл. тер мо-динамич. соотношений (напр., Клапейрона — Клаузиуса уравнение). ф Ф е р м и Э., Термодинамика, пер. с англ., Хар., 1969 К р и ч е в с к и й И. Р., Понятия и основы термодинамики. М., 1962 Зоммерфельд А., Термодинамика и статистическая физика, пер. с нем., М., 1955. [c.244]
В первой части учебного пособия кратко изложены исторические данные, показана роль, которую играли русские и советские ученые в развитии основных положений теоретической теплотехники. Подробно рассмотрены основные законы термодинамики, термодинамические процессы, дифференциальные уравнения термодинамики и истечение газов и паров. В прикладной части рассмотрены циклы двигателей внутреннего сгорания, газотурбинных и паротурбинных установок, а также циклы атомных электростанций, [c.3]
Изучаемая нестационарная открытая система первоначально не находится в равновесии со своим термостатом ее эволюция направлена в сторону достижения частичного равновесия системы с термостатом. С учетом того, что эволюцией системы управляют потенциалы (термодинамические силы), характеризующие состояние системы, Г.П. Гладышев [2] использовал для анализа открытых систем удельную величину функции Гиббса, отнесенную к единице объема или массы. Напомним, что в соответствии с функцией Гиббса движущей силой процесса для закрытых систем при постоянных температуре и давлении является стремление системы к минимуму свободной энергии (максимуму энтропии), если в системе не совершается никакая работа кроме работы расширения [17]. Гиббс предвидел широкие возможности термодинамики для решения различных задач, сделав следующие предсказания ...Несмотря на то, что статистическая механика исторически обязана возникновением исследованиям в области термодинамики, она, очевидно, в высокой мере заслуживает независимого развития как вследствие элегантности и простоты ее принципов, так и потому, что она приводит к новым результатам и проливает новый свет на старые истины в областях, совершенно чуждых термодинамике . [c.21]
Do'stlaringiz bilan baham: |