Principles of Electronics I



Download 0,74 Mb.
Pdf ko'rish
bet3/7
Sana17.04.2020
Hajmi0,74 Mb.
#45466
1   2   3   4   5   6   7
Bog'liq
Maydoniy tranzistоrlarni asosiy xarakteristikalarini xisoblash.


518

 

 

 

 



 

 

 



Principles of Electronics

Gate to source resistance =



9

15 V


10 A

GS

G

V

I

=



  =  15 

× 10


9

 

Ω  =  



15,000 M

Ω

Ω



Ω

Ω

Ω



This example shows the major difference between a JFET and a bipolar transistor.  Whereas the

input impedance of a JFET is several hundred M

Ω, the input impedance of a bipolar transistor is only

hundreds or thousands of ohms.  The large input impedance of a JFET permits high degree of isolation

between the input and output.

Example 19.8. 

 When V

GS

 of a JFET changes from 3.1 V to 3 V, the drain current changes

from 1 mA to 1.3 mA. What is the value of transconductance ?

Solution.

ΔV



GS

= 3.1 


− 3  =  0.1 V

... magnitude

ΔI

D

= 1.3 


− 1 =  0.3 mA

Transconductance,  g



f s

=

0.3 mA



3 mA/V

0.1V


D

GS

I

V

Δ

=



=

Δ

  =  



3000 µ mho

Example 19.9. 

 The following readings were obtained experimentally from a JFET :



V

GS

0 V

0 V

 0.2 V



V

DS

7 V

15 V

15 V

I

D

10 mA

10.25 mA

9.65 mA

Determine (i) a. c. drain resistance (ii) transconductance and (iii) amplification factor.

Solution.  (i)

  With V



GS

 constant at 0V, the increase in V



DS

 from 7 V to 15 V increases the drain

current from 10 mA to 10.25 mA i.e.

Change in drain-source voltage,

ΔV

DS

= 15 


− 7  =  8 V

Change in drain current,  

ΔI

D

= 10.25 


− 10  =  0.25 mA

a.c. drain resistance,  r



d

=

8 V



0.25 mA

DS

D

V

I

Δ

=



Δ

  =  


32 k

Ω

Ω



Ω

Ω

Ω



(ii)

With V



DS

 constant at 15 V, drain current changes from 10.25 mA to 9.65 mA as V



GS

 is


changed from 0 V to – 0.2 V.

Δ V



GS

= 0.2 


− 0  =  0.2 V

Δ I



D

= 10.25 


− 9.65  =  0.6 mA

Transconductance,  g



f s

=

0.6 mA



0.2 V

D

GS

I

V

Δ

=



Δ

  =  3 mA/V  =  



3000 µ mho

(iii)

Amplification factor,  µ = r



d

 

× g



fs

  =  (32 

× 10


3

× (3000 × 10



−6

)  =  


96

19.15 Variation of Transconductance (g



m

 or g



fs

) of JFET

We have seen that transconductance g

m

 of a JFET is the ratio

of a change in drain current (

ΔI



D

) to a change in gate-source

voltage (

ΔV



GS

) at constant V



DS

 i.e.

g

m

=

D



GS

I

V

Δ

Δ



The transconductance g

m

 of a JFET is an important pa-

rameter because it is a major factor in determining the volt-

age gain of JFET amplifiers. However, the transfer charac-

teristic curve for a JFET is nonlinear so that the value of g

m

depends upon the location on the curve. Thus the value of g



m

at point A in Fig. 19.17 will be different from that at point B.

Luckily, there is following equation to determine the value of

g

m

 at a specified value of V



GS 

:

Fig. 19.17



Field Effect Transistors

 

 

    

519

g

m

g



mo

 

(



)

1

GS



GS off

V

V







where


g

m

= value of transconductance at any point on the transfer characteristic curve



g

mo

= value of transconductance(maximum) at V



GS

 = 0


Normally, the data sheet provides the value of g

mo

. When the value of g



mo

 is not available, you

can approximately calculate g

mo

 using the following relation :



g

mo

=

(



)

2

|



|

DSS

GS off

I

V

Example 19.10. 

 A JFET has a value of g

mo

 = 4000 

μS. Determine the value of g



m

 at V

GS

 = – 3V.

Given that V

GS (off)

 = – 8V.

Solution.

g

m

g



mo

 

(



)

1

GS



GS off

V

V







= 4000 


μS 

– 3V


1 –

– 8V






= 4000 

μS (0.625) = 



2500 

μμμμμS



Example 19.11.

  The data sheet of a JFET gives the following information : I

DSS

 = 3 mA, V

GS

 

(off)

= – 6V and g

m (max)

 = 5000 

μS. Determine the transconductance for V



GS

 = – 4V and find drain

current I

D

 at this point.

Solution.

  At V

GS

 = 0, the value of g



m

 is maximum i.e. g



mo

.



g



mo

= 5000 


μS

Now


g

m

g



mo

 

(



)

1

GS



GS off

V

V







= 5000 


μS 

– 4V


1 –

– 6V






= 5000 

μS ( 1/3) = 



1667 

μμμμμS

Also

I

D

I



DSS

 

2

(



)

1

GS



GS off

V

V







= 3  mA 


2

4

1



6







=

 333 

μμμμμA

19.16 JFET Biasing

For the proper operation of n-channel JFET, gate must be negative w.r.t. source.  This can be achieved

either by inserting a battery in the gate circuit or by a circuit known as biasing circuit.  The latter

method is preferred because batteries are costly and require frequent replacement.

1.  Bias battery. 

 In this method, JFET is biased by a bias battery V



GG

.  This battery ensures that

gate is always negative w.r.t. source during all parts of the signal.

2.  Biasing circuit.

  The biasing circuit uses supply voltage V



DD

 to provide the necessary bias.

Two most commonly used methods are 

(i)

 self-bias

 (ii

potential divider method. We shall discuss

each method in turn.



520

 

 

 

 



 

 

 



Principles of Electronics

19.17 JFET Biasing by Bias Battery

Fig. 19.18 shows the biasing of a n-channel JFET by a bias battery

– V

GG

. This method is also called 



gate bias.

 The battery voltage – V



GG

ensures that gate – source junction remains reverse biased.

Since there is no gate current, there will be no voltage drop

across R



G

.



V

GS

V



GG

We can find the value of drain current I



D

 from the following

relation :



I

D

I



DSS

 

2



(

)

1



GS

GS off

V

V







The value of V



DS

 is given by ;

V

DS

V



DD

 – I



D

 R

D

Thus the d.c. values of I



D

 and V



DS

 stand determined. The operating point for the circuit is V



DS

I



D

.

Example 19.12. 

 A JFET in Fig. 19.19 has values of V

GS (off)

 = – 8V and I

DSS

 = 16 mA. Determine

the values of V

GS

, I

D

 and V

DS

 for the circuit.

Solution. 

 Since there is no gate current, there will be no

voltage drop across R



G

.



V

GS

V



GG

 = 




 

5V

Now


I

D

I



DSS

 

2

(



)

1

GS



GS off

V

V







= 16 mA 


2

5

1



8







= 16 mA (0.1406) = 



2.25 mA

Also


V

DS

V



DD

 – I



D

 R



D

= 10 V – 2.25 mA × 2.2 k

Ω = 

5.05 V

Note that operating point for the circuit is 5.05V, 2.25 mA.

19.18 Self-Bias for JFET

Fig. 19.20 shows the self-bias method for n-channel JFET. The re-

sistor R

S

 is the bias resistor.  The d.c. component of drain current

flowing through R

S

 produces the desired bias voltage.

Voltage across R

S

V



S

I





R

S

Since gate current is negligibly small, the gate terminal is at

d.c. ground i.e.V

G  

=  0.




V

GS

V



G

 

− V



S

  =  0 


− I



R

S

or

V



GS

=

− 



*

I



R

S

Thus bias voltage V



GS

 keeps gate negative w.r.t. source.



Fig. 19.18

Fig. 19.19



































*

V

GS

 V

G

 – V



S

 = Negative. This means that V



G

 is negative w.r.t. V



S

. Thus if V



G

 = 2V and V



S

 = 4V, then V



GS

= 2 – 4 = – 2V i.e. gate is less positive than the source. Again if V



G

 = 0V and V



S

 = 2V, then V



GS

 = 0 – 2 =

– 2V. Note that V

G

 is less positive than V



S

.

Fig. 19.20



Field Effect Transistors

 

 

    

521

Operating point. 

 The operating point (i.e., zero signal I



D

 and V



DS

) can be easily determined.

Since the parameters of the JFET are usually known, zero signal I

D

 can be calculated from the following

relation :

I

D

=

2



(

)

1



GS

DSS

GS off

V

I

V





Also



V

DS

V



DD

 

− I



D

 (R



D

 + R



S

)

Thus d.c. conditions of JFET amplifier are fully specified i.e. operating point for the circuit is



V

DS

I



D

.

Also,



R

S

=

|



|

|

|



GS

D

V

I

Note that gate resistor 

*

R

G

 does not affect bias because voltage across it is zero.



Midpoint Bias.

  It is often desirable to bias a JFET near the midpoint of its transfer characteris-

tic curve where I



D

 = I



DSS

/2. When signal is applied, the midpoint bias allows a maximum amount of

drain current swing between I

DSS

 and 0. It can be proved that when V



GS

 = V



GS

 

(off



/ 3.4, midpoint bias

conditions are obtained for I



D

.

I



D

I



DSS 

2

(



)

1

GS



GS off

V

V







 = I



DSS

 

2

(



)

(

)



/ 3.4

1

GS off



GS off

V

V







 = 0.5 I



DSS

To set the drain voltage at midpoint (V



D

 = V



DD

/2), select a value of R



D

 to produce the desired

voltage drop.

Example 19.13. 

 Find V

DS

 and V

GS

 in Fig. 19.21, given that I

D

 = 5 mA.

Solution.

V

S

I



D

 R



S

 = (5 mA) (470 

Ω) = 2.35 V

and


V

D

V



DD

 – I



D

 R



D

= 15V – (5 mA) × (1 k

Ω) = 10V



V



DS

V



D

 – V

S

 = 10V – 2.35 V



7.65V

Since there is no gate current, there will be no voltage drop across R



G

and V



G

 = 0.


              Now

V

GS

V



G

 – V



S

 = 0 – 2.35V = 



– 2.35 V

Example 19.14.

 

 The transfer characteristic of a JFET reveals that



when V

GS

 = – 5V, I

D

 = 6.25 mA. Determine the value of R

S

 required.

Solution.

R

S

=

|



|

5V

|



|

6.25 mA


GS

D

V

I

=

 = 



800 

Ω

Ω



Ω

Ω

Ω



Example 19.15.

  Determine the value of R

S

 required to self-bias a p-channel JFET with I

DSS

 =

25 mA, V

GS (off) 

= 15 V and V

GS

 = 5V.

Solution.

               I

D

  =  I



DSS

 

2



(

)

1



GS

GS off

V

V







 = 25 mA 

2

5V

1



15V





= 25mA  (1 – 0.333)



2

 = 11.1 mA



R

S

=

|



|

5V

|



|

11.1 mA


GS

D

V

I

=

 = 



450 

Ω

Ω



Ω

Ω

Ω



































*



R

G

 is necessary only to isolate an a.c. signal from ground in amplifier applications.



Fig. 19.21

522

 

 

 

 



 

 

 



Download 0,74 Mb.

Do'stlaringiz bilan baham:
1   2   3   4   5   6   7




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish