Number Theory: Structures, Examples, and Problems


I Fundamentals, 9. Some Special Problems in Number Theory



Download 1,87 Mb.
Pdf ko'rish
bet72/125
Sana08.02.2022
Hajmi1,87 Mb.
#434761
1   ...   68   69   70   71   72   73   74   75   ...   125
Bog'liq
Titu Andreescu, Dorin Andrica Number Theory Str

I Fundamentals, 9. Some Special Problems in Number Theory
The proof of this result uses the so-called Hermite interpolation polynomial
or formal series.
The most frequent situation is with
k
=
2. Then the linear recursion becomes
x
n
=
a
1
x
n

1
+
a
2
x
n

2
,
n

2
,
where
a
1
,
a
2
are given complex numbers and
x
0
=
α
0
,
x
1
=
α
1
.
If the characteristic equation
t
2

a
1
t

a
2
=
0 has distinct roots
t
1
,
t
2
, then
x
n
=
c
1
t
n
1
+
c
2
t
n
2
,
n

0
,
where
c
1
,
c
2
are solutions to the system of linear equations
c
1
+
c
2
=
α
0
,
c
1
t
1
+
c
2
t
2
=
α
1
,
that is,
c
1
=
α
1

α
0
t
2
t
1

t
2
,
c
2
=
α
0
t
1

α
1
t
1

t
2
.
If the characteristic equation has the nonzero double root
t
1
, then
x
n
=
c
1
t
n
1
+
c
2
nt
n
1
=
(
c
1
+
c
2
n
)
t
n
1
,
where
c
1
,
c
2
are determined from the system of equations
x
0
=
α
0
,
x
1
=
α
1
,
that is,
c
1
=
α
0
,
c
2
=
α
1

α
0
t
1
t
1
.
Example.
Let us find the general term of the sequence
P
0
=
0
,
P
1
=
1
, . . . ,
P
n
=
2
P
n

1
+
P
n

2
,
n

2
.
The characteristic equation is
t
2

2
t

1
=
0, whose roots are
t
1
=
1
+

2
and
t
2
=
1


2. We have
P
n
=
c
1
t
n
1
+
c
2
t
n
2
,
n

0, where
c
1
+
c
2
=
0 and
c
1
(
1
+

2
)
+
c
2
(
1


2
)
=
1; hence
P
n
=
1
2

2
(
1
+

2
)
n

(
1


2
)
n
,
n

0
.
This sequence is called
Pell’s sequence
, and it plays an important part in Dio-
phantine equations.
In some situations we encounter inhomogeneous recursions of order
k
of the
form
x
n
=
a
1
x
n

1
+
a
2
x
n

2
+ · · · +
a
k
x
n

k
+
b
,
n

k
,
where
a
1
,
a
2
, . . . ,
a
k
,
b
are given complex numbers and
x
1
=
α
1
,
x
2
=
α
2
, . . .
,
x
k

1
=
α
k

1
. The method of attack consists in performing a translation
x
n
=
y
n
+
β
, where
β
is the solution to the equation
(
1

a
1

a
2
−· · ·−
a
k

=
b
when
a
1
+
a
2
+ · · · +
a
k
=
1. The sequence
(
y
n
)
n

0
satisfies the linear recursion (1).


9.3. Sequences of Integers
187
Example.
Let us find
x
n
if
x
0
=
α
,
x
n
=
ax
n

1
+
b
,
n

1.
If
a
=
1, we have an arithmetic sequence whose first term is
α
and whose
common difference is
b
. In this case
x
n
=
α
+
nb
.
If
a
=
1, we perform the translation
x
n
=
y
n
+
β
, where
β
=
b
1

a
. In this
case
(
y
n
)
n

0
satisfies the recursion
y
0
=
α

β
,
y
n
=
ay
n

1
,
n

1, which is
a geometric sequence whose first term is
α

β
and whose ratio is
a
. We obtain
y
n
=


β)
a
n
; hence
x
n
=
α

b
1

a
a
n
+
b
1

a
,
n

0
.
Problem 9.3.8.
Let a and b be positive integers and let the sequence
(
x
n
)
n

0
be
defined by x
0
=
1
and x
n
+
1
=
ax
n
+
b for all nonnegative integers n. Prove
that for any choice of a and b, the sequence
(
x
n
)
n

0
contains infinitely many
composite numbers.
(1995 German Mathematical Olympiad)
Solution.
The case
a
=
1 gives
x
n
=
1
+
b
+ · · · +
b
n

1
=
b
n

1
b

1
,
n

0. If
n
is
even,
n
=
2
k
, then
x
n
=
(
b
k
+
1
)
b
k

1
b

1
=
(
b
k
+
1
)
x
k
,
k

0
and we are done.
Let
a
=
1.
Assume to the contrary that
x
n
is composite for only finitely many
n
. Take
N
larger than all such
n
, so that
x
m
is prime for all
n
>
N
. Choose such a prime
x
m
=
p
not dividing
a

1 (this excludes only finitely many candidates). Let
t
be
such that
t
(
1

a
)

b
(
mod
p
)
; then
x
n
+
1

t

ax
n
+
b

b
=
a
(
x
n

t
) (
mod
p
).
In particular,
x
m
+
p

1
=
t
+
(
x
m
+
p

1

t
)

t
+
a
p

1
(
x
m

t
)

(
1

a
p

1
)
t

0
(
mod
p
).
However,
x
m
+
p

1
is a prime greater than
p
, yielding a contradiction. Hence
infinitely many of the
x
n
are composite.
Problem 9.3.9.
Find a
n
if a
0
=
1
and a
n
+
1
=
2
a
n
+
3
a
2
n

2
, n

0
.
Solution.
We have
(
a
n
+
1

2
a
n
)
2
=
3
a
2
n

2, so
a
2
n
+
1

4
a
n
+
1
a
n
+
a
2
n
+
2
=
0
,
n

0
.
Then
a
2
n

4
a
n
a
n

1
+
a
2
n

1
+
2
=
0
,
n

1
;


188
I Fundamentals, 9. Some Special Problems in Number Theory
hence, by subtraction,
a
2
n
+
1

a
2
n

1

4
a
n
(
a
n
+
1

a
n

1
)
=
0
for all
n

1. Because it is clear that
(
a
n
)
n

0
is increasing, we have
a
n
+
1

a
n

1
=
0, for all
n

1, so
a
n
+
1
+
a
n

1

4
a
n
=
0
,
n

1
,
that is,
a
n
+
1
=
4
a
n

a
n

1
,
n

1. Moreover,
a
0
=
1 and
a
1
=
3. The character-
istic equation is
t
2

4
t
+
1
=
0, whose roots are
t
1
=
2
+

3 and
t
2
=
2


3.
We obtain
a
n
=
1
2

3
7
(
1
+

3
)(
2
+

3
)
n

(
1


3
)(
2


3
)
n
8
,
n

0
.
We can also write
a
n
as follows:
a
n
=
1

3
1
+

3
2
2
n
+
1

1


3
2
2
n
+
1
,
n

0
.
Note that from
a
0
=
1,
a
1
=
3, and
a
n
+
1
=
4
a
n

a
n

1
it follows by strong
induction that
a
n
is a positive integer for all
n
.
Problem 9.3.10.
Consider the sequence
{
a
n
}
such that a
0
=
4
, a
1
=
22
, and
a
n

6
a
n

1
+
a
n

2
=
0
for n

2
. Prove that there exist sequences
{
x
n
}
and
{
y
n
}
of positive integers such that
a
n
=
y
2
n
+
7
x
n

y
n
for any n

0
.
(2001 Bulgarian Mathematical Olympiad)
Solution.
Consider the sequence
{
c
n
}
of positive integers such that
c
0
=
2,
c
1
=
1, and
c
n
=
2
c
n

1
+
c
n

2
for
n

2.
We prove by induction that
a
n
=
c
2
n
+
2
for
n

0. We check the base cases
of
a
0
=
4
=
c
2
and
a
1
=
9
=
c
4
. Then, for any
k

2, assuming that the claim
holds for
n
=
k

2 and
n
=
k

1,
c
2
k
+
2
=
2
c
2
k
+
1
+
c
2
k
=
2
(
2
c
2
k
+
c
2
k

1
)
+
a
k

1
=
4
c
2
k
+
(
c
2
k

c
2
k

2
)
+
a
k

1
=
6
a
k

1

a
k

2
=
a
k
,



Download 1,87 Mb.

Do'stlaringiz bilan baham:
1   ...   68   69   70   71   72   73   74   75   ...   125




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish