Number Theory: Structures, Examples, and Problems


I Fundamentals, 6. Arithmetic Functions



Download 1,87 Mb.
Pdf ko'rish
bet50/125
Sana08.02.2022
Hajmi1,87 Mb.
#434761
1   ...   46   47   48   49   50   51   52   53   ...   125
Bog'liq
Titu Andreescu, Dorin Andrica Number Theory Str

I Fundamentals, 6. Arithmetic Functions
Theorem 6.1.1.
The M¨obius function
μ
is multiplicative.
Proof.
Let
m
,
n
be positive integers such that gcd
(
m
,
n
)
=
1. If
p
2
|
m
for some
p
>
1, then
p
2
|
mn
and so
μ(
m
)
=
μ(
mn
)
=
0 and we are done. Consider now
m
=
p
1
· · ·
p
k
,
n
=
q
1
· · ·
q
h
, where
p
1
, . . . ,
p
k
,
q
1
, . . . ,
q
h
are distinct primes.
Then
μ(
m
)
=
(

1
)
k
,
μ(
n
)
=
(

1
)
h
, and
mn
=
p
1
· · ·
p
k
q
1
· · ·
q
h
. It follows that
μ(
mn
)
=
(

1
)
k
+
h
=
(

1
)
k
(

1
)
h
=
μ(
m
)μ(
n
)
.
For an arithmetic function
f
we define its
summation function F
by
F
(
n
)
=
d
|
n
f
(
d
).
The connection between
f
and
F
is given by the following result.
Theorem 6.1.2.
If f is multiplicative, then so is its summation function F .
Proof.
Let
m
,
n
be positive integers such that gcd
(
m
,
n
)
=
1 and let
d
be a divisor
of
mn
. Then
d
can be uniquely represented as
d
=
kh
, where
k
|
m
and
h
|
n
.
Because gcd
(
m
,
n
)
=
1, we have gcd
(
k
,
h
)
=
1, so
f
(
kh
)
=
f
(
k
)
f
(
h
)
. Hence
F
(
mn
)
=
d
|
mn
f
(
d
)
=
k
|
m
h
|
n
f
(
k
)
f
(
h
)
=
k
|
m
f
(
k
)
h
|
n
f
(
h
)
=
F
(
m
)
F
(
n
).
Remark.
If
f
is a multiplicative function and
n
=
p
α
1
1
· · ·
p
α
k
k
, then
F
(
n
)
=
k
i
=
1
1
+
f
(
p
i
)
+ · · · +
f
(
p
α
i
i
)
.
(
1
)
Indeed, after multiplication on the right-hand side we get a sum having terms
of the form
f
(
p
β
1
1
)
· · ·
f
(
p
β
k
k
)
=
f
(
p
β
1
1
· · ·
p
β
k
k
)
, where 0

β
1

α
1
, . . . ,
0

β
k

α
k
. This sum is obviously
F
(
n
)
.
The function
g
(
n
)
=
μ(
n
)
f
(
n
)
is multiplicative; hence applying (1), we get,
for its summation function
G
,
G
(
n
)
=
k
i
=
1
1
+
μ(
p
i
)
f
(
p
i
)
=
k
i
=
1
1

f
(
p
i
)
.
From (1) we also can derive the following formula:
d
|
n
μ(
d
)
f
(
d
)
=
(
1

f
(
p
1
))
· · ·
(
1

f
(
p
k
)).
(
2
)


6.1. Multiplicative Functions
107
If we take
f
=
1 in formula (2), then we get the following basic property of
the M¨obius function: For any integer
n

2,
d
|
n
μ(
d
)
=
0
.
Theorem 6.1.3.
(M¨obius inversion formula)
Let f be an arithmetic function and
let F be its summation function. Then
f
(
n
)
=
d
|
n
μ(
d
)
F
n
d
.
(
3
)
Proof.
We have
d
|
n
μ(
d
)
F
n
d
=
d
|
n
μ(
d
)
c
|
n
d
f
(
c
)
=
d
|
n
c
|
n
d
μ(
d
)
f
(
c
)
=
c
|
n
d
|
n
c
μ(
d
)
f
(
c
)
=
c
|
n
f
(
c
)
d
|
n
c
μ(
d
)
=
f
(
n
),
since for
n
c
>
1 we have
"
d
|
n
c
μ(
d
)
=
0.
We have used the fact that the sets
)
(
d
,
c
)
d
|
n
and
c
|
n
d
*
and
)
(
d
,
c
)
c
|
n
and
d
|
n
c
*
are equal.
They are both equal to
{
(
c
,
d
)
cd
|
n
}
.
Theorem 6.1.4.
Let f be an arithmetic function and let F be its summation func-
tion. If F is multiplicative, then so is f .
Proof.
Let
m
,
n
be positive integers such that gcd
(
m
,
n
)
=
1 and let
d
be a divisor
of
mn
. Then
d
=
kh
, where
k
|
m
,
h
|
n
, and gcd
(
k
,
h
)
=
1. Applying the M¨obius
inversion formula, it follows that
f
(
mn
)
=
d
|
mn
μ(
d
)
F
mn
d
=
k
|
m
h
|
n
μ(
kh
)
F
mn
kh
=
k
|
m
h
|
n
μ(
k
)μ(
h
)
F
m
k
F
n
h
=
k
|
m
μ(
k
)
F
m
k
h
|
n
μ(
h
)
F
n
h
=
f
(
m
)
f
(
n
).


108
I Fundamentals, 6. Arithmetic Functions
Let
f
and
g
be two arithmetic functions. Define their
convolution product
or
Dirichlet
2
product f

g
by
(
f

g
)(
n
)
=
d
|
n
f
(
d
)
g
n
d
.
Note that the convolution product can be written more symmetrically as
(
f

g
)(
n
)
=
ab
=
n
f
(
a
)
g
(
b
).
The following relation holds: 1

f
=
F
, the summation function of
f
.
Problem 6.1.1.
(1) Prove that the convolution product is commutative and asso-
ciative.
(2) Prove that for any arithmetic function f ,
f

ε
=
ε

f
=
f
,
where
ε(
n
)
=
1
if n
=
1
and
0
otherwise.
Solution.
Let
f
and
g
be two arithmetic functions. Then
(
f

g
)(
n
)
=
d
|
n
f
(
d
)
g
n
d
=
d
1
|
n
f
n
d
1
g
(
d
1
)
=
(
g

f
)(
n
),
since if
d
runs through all divisors of, then so does
d
1
=
n
d
. Therefore
f

g
=
g

f
.
Let
f
,
g
,
h
be arithmetic functions. To prove the associativity law, let
u
=
g

h
and consider
f

u
=
f

(
g

h
)
. We have
(
f

u
)(
n
)
=
a
|
n
f
(
a
)
u
n
a
=
ad
=
n
f
(
a
)
bc
=
d
g
(
b
)
h
(
c
)
=
abc
=
n
f
(
a
)
g
(
b
)
h
(
c
).
Similarly, if we set
v
=
f

g
and consider
v

h
, we have
(v

h
)(
n
)
=
dc
=
n
v(
d
)
h
(
c
)
=
dc
=
n
ab
=
d
f
(
a
)
g
(
b
)
h
(
c
)
=
abc
=
n
f
(
a
)
g
(
b
)
h
(
c
)
;
2
Johann Peter Gustav Lejeune Dirichlet (1805–1859), German mathematician who proved in 1837
that there are infinitely many primes in any arithmetic progression of integers for which the common
difference is relatively prime to the terms. Dirichlet made essential contributions in number theory,
probability theory, functional analysis, and Fourier series.



Download 1,87 Mb.

Do'stlaringiz bilan baham:
1   ...   46   47   48   49   50   51   52   53   ...   125




Ma'lumotlar bazasi mualliflik huquqi bilan himoyalangan ©hozir.org 2024
ma'muriyatiga murojaat qiling

kiriting | ro'yxatdan o'tish
    Bosh sahifa
юртда тантана
Боғда битган
Бугун юртда
Эшитганлар жилманглар
Эшитмадим деманглар
битган бодомлар
Yangiariq tumani
qitish marakazi
Raqamli texnologiyalar
ilishida muhokamadan
tasdiqqa tavsiya
tavsiya etilgan
iqtisodiyot kafedrasi
steiermarkischen landesregierung
asarlaringizni yuboring
o'zingizning asarlaringizni
Iltimos faqat
faqat o'zingizning
steierm rkischen
landesregierung fachabteilung
rkischen landesregierung
hamshira loyihasi
loyihasi mavsum
faolyatining oqibatlari
asosiy adabiyotlar
fakulteti ahborot
ahborot havfsizligi
havfsizligi kafedrasi
fanidan bo’yicha
fakulteti iqtisodiyot
boshqaruv fakulteti
chiqarishda boshqaruv
ishlab chiqarishda
iqtisodiyot fakultet
multiservis tarmoqlari
fanidan asosiy
Uzbek fanidan
mavzulari potok
asosidagi multiservis
'aliyyil a'ziym
billahil 'aliyyil
illaa billahil
quvvata illaa
falah' deganida
Kompyuter savodxonligi
bo’yicha mustaqil
'alal falah'
Hayya 'alal
'alas soloh
Hayya 'alas
mavsum boyicha


yuklab olish